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Executive summary

Deliverable 4.1 [51] presented a notation that allows one to specify multiple possible
evolution paths for UML Diagrams. The notation is called UMLseCh and is a further
extension of the UMLsec profile [19]. This document specifies a formal foundation for
this notation that aims at automatic (re)-verification of security annotated diagrams after
evolution. To achieve this, we give a more precise definition of the UMLseCh semantics
itself, which allows us pinning down what we mean by ‘evolution’ from a model M to an
evolved M ′. As a result of this, given an UMLseCh diagram we can extract one or more
deltas ∆i containing the model elements to be added, substituted or deleted from/to the
original diagram.

These modifications to an original diagramM have two main consequences: they may al-
ter the consistency of the diagram from the purely UML syntactical point of view, but more
importantly they may alter the security properties of M . We discuss the first problem to
some degree, but we focus on the latter. For this, we present sound decision procedures
for different security properties that allow to establish whether a given ∆ preserves them
or not.

Moreover, we report on the implementation of these algorithms as plugins for the existing
UMLsec Tool Suite. This allows us an automatic verification of UMLseCh annotated Dia-
grams drawn with the ArgoUML tool. Metrics of the efficiency gain of this implementation
as opposed to trivial re-verification are presented.

As an application exercise, we model some fragments of the Global Platform (POPS case
study) and verify the preservation of selected [50] security properties under evolution.
Some of these fragments are used to integrate our approach with other Work Packages.
We report on this integration links as summarized in the following.

D4.2 in the Project Timeline

This deliverable contains mainly results related to Task T4.2 ‘Provide formal foundation for
evolving security extension’ (M6-M18) and partially T4.3 ‘Extend existing security analy-
sis tools with evolving security ’ (M18-M30). D4.2 corresponds to the milestone of M24 for
Work Package 4 ‘Providing a formal foundation for the evolving security extension includ-
ing links for the code-level verification in WP6 and WP7 ’ and is therefore located between
months 12 and 24 in the General Project Timeline 1. It contains results prominently on:

• Models: The application of the techniques developed in WP4 to the POPS Case
Study began in D4.1. In this Derivable we model other fragments of the Global
Platform (Chapter 3), partially in a joint effort with other Work Packages (WP6 and
WP7, as stated in the Milestone for M24, Chapters 4,5). The ATM Case Study is
also partially modelled with UMLseCh (Chapter 6).
• Languages: Formal foundations for the UMLseCh notation are defined in Chapter

2.
• Tools: D4.2 has the double nature Report/Prototype. In Chapter 7 we summarize

the results of the current status of the tool implementation effort.
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Figure 1: SecureChange project timeline

Validation

Deliverable 1.2 (due to Work Package 1) defines General Scientific and Industrial vali-
dation criteria, aimed at a general validation of the Project due to M36. The artefacts
contained in this Deliverable that are subject to this validation are:

Industrial :

• The Fragment of the Global Platform modelled with UMLseCh in Chapters 3,4,5 and
the reasoning techniques under evolution applied to these models. These analysis
include both the ‘Software update’ and the ‘Specification Evolution’ requirements
and specifically the properties ‘Information protection’ and ‘Life-cycle consistency ’
as defined in [50].
• The fragment of the ATM as described in Chapter 6. The general requirement

considered is ‘Organizational Level Change’ and the properties considered are ‘In-
formation Access’ and ‘Information Protection’.

Scientific
• The UMLseCh notation. This falls within the category ‘Modeling Languages’ of the

General Criteria in D1.2.
• The decision procedures for security properties in evolving scenarios as defined in

Chapter 3. This corresponds to the ‘Algorithms’ category of the General Criteria.
• The tool support for the UMLseCh notation and the algorithms developed for the

analysis of evolution.
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Some preliminary discussion about the Scientific validation of these artefacts is given in
Appendix A. A full list of the artefacts subject to validation will be given in M36 (D4.3).

Integration

Figure 2 summarizes the integration links among the different Work Packages within the
Project. The Change requirements and Security properties in the following refer to the
definition in [50].

ATM

ATM
ATM

POPS

HOMES POPS

POPS

POPS

ATM

WP3
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WP2

WP6

WP4

WP7

Figure 2: Integration links between work packages

This deliverable contains the following links:

WP4-WP3 Chapter 6 contains this integration link presenting a connection between the
modeling and verification techniques developed by WP4 with WP3 (Requirements) based
on the ATM Case Study. A risk analysis done with the Thales Security DSML gives high-
level security requirements, which are reflected in the System Design and analyzed by
means of the UMLseCh approach. The general requirement considered is ‘Organiza-
tional Level Change’ and the properties considered are ‘Information Access’ and ‘Infor-
mation Protection’.

WP4-WP6 This integration link, presented in Chapter 4 describes how the result of the
verification process at the model level can be used to push constraints to the verification
at the code level, based on the POPS case study for a GP specific property and se-
cure information flow. The general requirement considered is ‘Software update’ and the
common property is ‘Information protection’.

WP4-WP7 Based on the Global Platform life-cycle (POPS), this link (Chapter 5) shows
how model-based testing for evolving systems can benefit from the techniques developed
in WP4. The general requirement considered is ‘Specification Evolution’ and the common
property is ‘Life-cycle consistency ’.
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1 Introduction

During Year 1 (Deliverable 4.1 [51]), Work Package 4 introduced a notation that extends
the UMLsec profile for describing model evolutions: UMLseCh. UMLseCh design mod-
els can be used for change exploration and decision support when considering how to
integrate new or additional security functions and to explore the security implications
of planned system evolution. To maintain the security properties of a system through
change, the change can be explicitly expressed such that its implications can be ana-
lyzed a priori. This notation was tailored to allow an automatic analysis deciding on the
preservation of security properties in the evolved models, as defined in Task T4.2 ‘Pro-
vide formal foundation for evolving security extension’, which is one of the goals of this
deliverable. To achieve this objective, we rely on the formal foundations (abstract syntax
and behavioral semantics) of UMLsec and give a more precise formulation of the syntax
and semantics of UMLseCh, already introduced in D4.1.

We then describe sound decision procedures that help to the determine the security
preservation of the evolution possibilities described with the UMLseCh notation. Since
the assumption is that the original UMLsec model is secure (it conforms to the annotated
security requirements), the verification techniques proposed aim at re-using as much
as possible the already existing verification information. Notice that one could trivially
re-run the security analysis done to establish the security of the original model on the
evolved model to decide on the preservation. This would result in general in high resource
consumption for large systems. Intuitively, if the cost associated to the verification of a
security property depends on a number n of model elements, but the evolution affects
only a number m ≤ n of security relevant elements, it is more efficient to check only
the modified parts if the security property is local enough. For complex diagrams with
hundreds of model elements, it can actually happen that m� n.

The application of these techniques is mainly focused on the POPS case study, where
several fragments are considered. In particular, this case study is used to draw integra-
tion links with Work Packages 6 and 7, where we apply the modeling and verification
techniques to concrete properties of the Case Study as specified in [50]. The integra-
tion work done with WP6 gives a link with code-level verification, whereas we support
the model-based testing approach of WP7 by checking the correctness of these models
against security properties using the UMLseCh approach. A fragment of the ATM case
study is also considered to show how the techniques developed in WP4 can be linked
with WP3.

The UMLseCh modeling notation and the verification techniques should be implementable
as an extension to the current UMLsec Tool Suite, as defined in task T4.3 ‘Extend existing
security analysis tools with evolving security ’ 1. In this document we give details about
this implementation effort, including links to the binaries and screen-cast of demonstra-
tions.

1An ongoing task started on Month 18 and to be completed within Month 30.
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Chapters Walk-through Chapter 2 recalls the notation defined in D4.1 (with some
minor modifications) and defines its semantics based on the UML Abstract syntax of
UMLsec [19]. It also discusses the issue of model correctness after evolution. Chapter 3
presents the techniques proposed to reason soundly about security preservation under
evolution. This is done for several UMLsec stereotypes, and in Section 3.2 the application
of the notation and the verification techniques to a fragment of the Global Platform are
presented. The link between WP4 and WP6 (Model-based and Code-based verification),
based on the POPS Case Study (‘Software Update’) is presented in Chapter 4. Chapter
5 describes the integration work done between WP4 and WP7: verification techniques for
evolving models are applied to model-based testing, also based on POPS (‘Specification
Evolution’). Chapter 6 presents the link between WP4 and WP3, using the Thales Se-
curity DSML approach and based on the ATM Case Study. Finally, Chapter 7 reports on
the implementation of the UMLseCh verification techniques in the context of the UMLsec
Tool Suite.

Acknowledgements We would like to thank Johannes Kowald, Gregor Kotainy, Yousefi
Parvaneh and Daniel Warzecha, students of the TU Dortmund, for their contribution to
the UMLseCh plugins and to Chapter 3 of this Deliverable. We also warmly thank Holger
Schmidt, post-doc at the TU Dortmund for his help in the plug-in implementation effort.
Special thanks to Federica Paci (UNITN), Frank Innerhofer-Oberperfler (UIB) and Nguyen
Quang-Huy (GTO) for their comments on earlier versions of this document.
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2 A Formal Foundation for UMLseCh

In D4.1 we introduced the UMLseCh notation up to some formality degree ([51]). In this
chapter we give more formal details about its semantics, based on the abstract syntax
of UML as defined in [19]. Some minor changes on the notation have been made with
respect to the one defined in Year 1. For example, the question of complex evolutions is
addressed with more detail in Section 2.1.4. We treat here only the ‘concrete’ notation of
D4.1, since the ‘abstract’ notation was meant only to superficially annotate changes and
had no semantics. Therefore, only the concrete notation is suitable for the verification
under evolution tasks. In Section 2.5 we discuss how the changes defined in UMLseCh
affect model consistency.

2.1 The UMLseCh Extension

2.1.1 The Profile

As it is specified in the Catalog of UML Profile Specifications [1], a UML profile does one
or more of the following:

• Identifies a subset of the UML metamodel.

• Specifies "well-formedness rules" beyond those specified by the identified subset
of the UML metamodel.

• Specifies "standard elements" beyond those specified by the identified subset of
the UML metamodel.

• Specifies semantics, expressed in natural language, beyond those specified by the
identified subset of the UML metamodel.

• Specifies common model elements, expressed in terms of the profile.

This Section, together with the Sections 2.1.2, 2.1.5 and 2.5, define the UMLseCh profile,
following the structure described above.

The UMLseCh profile concerns all of UML. Figure 2.1 shows the list of stereotypes, to-
gether with their tags and constraints. These stereotypes do not have parents. Figure
2.2 shows the corresponding tags. The tag ref is a DataTag and the tags substitute, add
and delete are all ReferenceTags. Indeed, as it will be described in the following sec-
tions, the UMLseCh tagged values associated to these three tags are model elements,
but their role is to describe possible future model elements that do not exist in the model
yet. UMLseCh models possible future changes, thus theoretically, the substitutive or
additive model elements do not exist on the model yet, but only as an attribute value

D4.2 Formally founded automated security analysis
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Stereotype Base Class Tags Constraints Description
change all ref, change FOL formula execute sub-changes

in parallel
substitute all ref, substitute, FOL formula substitute a model

element
add all ref, add, FOL formula add a model

element
delete all ref, delete FOL formula delete a model

element
substitute-all all ref, substitute, FOL formula substitute a

group of elements
add-all all ref, add, FOL formula add a group

of elements
delete-all all ref, delete FOL formula delete a group

of elements

Figure 2.1: UMLseCh stereotypes

inside a change stereotype1. However, at the concrete level, i.e. in a tool, this value is
either the model element itself if it can be represented with sequence of characters, or a
namespace containing the model element. This could be considered as a DataTag, pro-
vided that model elements and namespaces containing model elements are considered
as data. However, the name of a namespace is a reference to the namespace itself. In
addition, assuming that a string-based model element notation used in the tagged val-
ues of UMLseCh represent a reference to the model element that it describes, it can
then be considered as a ReferenceTag. For example, the stereotype « Internet » used
as the value of a tag substitute represents a reference to the actual stereotype, and
not the stereotype itself. UMLseCh tags are thus all considered as ReferenceTags (ex-
cept the tag ref). Figure 2.1 and Figure 2.2 both follow the notation used in [19] for the
UMLsec profile definition2. As for UMLsec, the concepts of UMLseCh can be used at
both the type and the instance level. However, for simplicity reasons, the examples and
description in the following will only apply to the instance level. A complete description
of the UMLseCh stereotypes and their associated tags is given in the following sections.
Although UMLseCh could be used alone as an evolution modeling language, it is specif-
ically intended to model the evolution in a security oriented context (in particular, it does
not aim to be an alternative for any existing general-purpose evolution specification or
model transformation approaches, but in fact the results presented in this deliverable
could be used in the context of those approaches). It is thus an extension of UMLsec
and requires the UMLsec profile as prerequisite profile. The diagram representing the
UMLseCh profile is shown in Figure 2.3.

1The type change represents a type of stereotype that included « change »,« substitute », « add » or
« delete ».

2Although the UMLsec profile was written following a previous version of UML, the UMLseCh profile
follows the same notation since it still respects the current specification of UML, defined in [44].
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Tag Stereotype Type Multip. Description
ref change, substitute, add, list of strings 1 List of labels

delete, substitute-all, identifying a
add-all, delete-all change

substitute substitute, list of pairs of 1 List of
substitute-all model elements substitutions

add add, add-all list of pairs of 1 List of
model elements additions

delete delete, delete-all list of pairs of 1 List of
model elements deletions

change change list of references 1 List of
simultaneous changes

Figure 2.2: UMLseCh tags

first order logic that represent
whether a change referenced by
the associated ref value is
allowed to happen.

list of constraint expressed in
All the stereotypes have a

tagged values have the same size.
For each stereotype, the lists of its

«stereotype»

add:Evolution

Add
«stereotype»

ref:[String]

Delete

delete:Evolution

«stereotype»

Substitute−all
«stereotype»

Add−all
«stereotype»

Delete−all

ref:[String]

«profile» UMLseCh

1..* 1..*

«stereotype»

Substitute

ref:[String]

1..*

1 1 1

substitute:Evolution

«stereotype»

change:[[String]]

Change

ref:[String]

e’:NamedElement

e:NamedElement

Evolution

Figure 2.3: UMLseCh profile
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2.1.2 Description of the Notation

2.1.2.1 « substitute »

The stereotype « substitute » attached to a model element denotes the possibility for that
model element to evolve over time and defines what the possible changes are. It has two
associated tags, namely ref and substitute. These tags are of the form { ref = CHANGE-
REFERENCE } and
{ substitute = (ELEMENT1, NEW1), . . . , (ELEMENTn, NEWn) }, with n ∈ N. The tag ref
takes a list of sequences of characters as value, each element of this list being simply
used as a reference of one of the changes modeled by the stereotype « substitute ».
In other words, the values contained in this tag can be seen as labels identifying the
changes. The values of this tag can also be considered as predicates which take a truth
value that can be used to evaluate conditions on other changes. This usage of the values
of tags ref will be explained further in this section. The tag substitute has a list of pairs of
model element as value, which represent the substitutions that will happen if the related
change occurs. The pairs are of the form (e, e′), where e is the element to substitute and
e′ is the substitutive model element. More than one occurrence of the same e in the list is
allowed 3. However, two occurrences of the same pair (e, e′) cannot exist in the list, since
it would model the same change twice. For the notation of this list, two possibilities exist.
An element of the pair is written as the model element itself if it can fit in the tag notation,
i.e. if it is based on characters. It is for example the case for a stereotype, which would
result to the notation { substitute = (« stereotype »,e′) }. On the other hand, if the model
element cannot fit in the tag notation (it is the case for example with a class, a state or a
component), it is placed in a namespace and the name of this namespace is the element
of the pair contained in the list used as tagged value. The namespace notation allows
UMLseCh stereotypes to graphically model more complex changes, but requires a par-
ticular behavior that will be described in Section 2.1.3. Examples will also illustrate such
situations further in this chapter. The element e of a pair (e, e′) representing a substitu-
tion is optional; if the model element that has to be substituted is clearly identified by the
syntactic notation, i.e. if there is no possible ambiguity to state which model element is
concerned by the change modeled by the stereotype « substitute », the element e can be
omitted. On the contrary, if that model element is not clearly identifiable, it must be used.
More precisely, when the model element to substitute is the one to which the stereotype
« substitute » is attached, the element e of the pair (e, e′) is not necessary. When the
model element concerned by the substitution is a sub-element of the one to which the
stereotype is attached, the element e is necessary 4. In the case where the element e
is omitted, the value of the list appears as the element e′ in the tagged value, instead of
the pair. Note that this is just a syntactic sugar. More precisely, in formal representations
required for applying changes, the substitutions of the list of the tag substitute will always
be pairs (e, e′). In order to identify the model element precisely, we can use, if necessary,
either the UML namespaces notation or, if this notation is insufficient, the abstract syntax

3UMLseCh aims to model the possible changes that could occur, not one actual change that will happen
sooner or later.

4The reason why the stereotype would not be attached to the sub-element itself, other than because it
improves the graphical visibility and readability, is that the abstract syntax of UMLseCh, defined in Section
2.5, does not allow the sub-element to have stereotypes.
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Figure 2.4: Example of stereotype « substitute »

of UMLseCh, defined in Section 2.5. In the case when the abstract syntax of UMLseCh
is used, the expression is placed in a comment with the value of the list of the tag ref
associated to the change. This comment is then attached to the concerned stereotype. If
the change happens, it is also important that it leaves the resulting model in a consistent
state. Therefore, to avoid any unwanted results, the values of both the elements of the
pair representing the substitution must be of the same type. If the element e of the pair (e,
e′) is omitted, e′ must be of the same type as the model element to which « substitute »
is attached. This offers a limited protection as it only ensures that the UML models will
remain correct from a syntactic point of view, but does not guarantee a consistent se-
mantics. For example, it ensures that a method of a class will not be substituted by an
attribute, leaving the diagram in an inconsistent syntactic state. However, it does not stop
one from modeling the substitution of a stereotype « critical » attached to a class by a
stereotype « Internet », although this is not permitted by the UMLsec Profile definition.
More rules to ensure diagrams consistency will be given in the following. To show how to
use the UMLseCh notation, the following example can be considered. Assume that we
want to specify the change of a link stereotyped « Internet » so that it is now stereotyped
« encrypted ». For this, the following:

« substitute »

{ ref = encrypt-link }

{ substitute = (« encrypted », « Internet ») }

is attached to the link concerned by the change. Such an example is shown in Figure 2.4.

The stereotype « substitute » also has a list of optional constraints formulated in first order
logic. This list of constraints is written between square brackets and is of the form [(ref1,
CONDITION1), . . . , (refn, CONDITIONn)], ∀n ∈ N, where, ∀i : 1 ≤ i ≤ n, refi is a value of
the list of a tag ref and CONDITIONn can be any type of first order logic expression, such
as A ∧ B, A ∨ B, A ∧ (B ∨ ¬C), (A ∧ B) ⇒ C, ∀x ∈ N.P (x), etc. It basically represents
whether or not the change is allowed to happen (i.e. if the condition is evaluated to true,
the change is allowed, otherwise the change is not allowed). As mentioned earlier, an el-
ement of the list used as the value of the tag ref of a stereotype « substitute » can be used
as an atomic predicate for the constraint of another stereotype « substitute ». The truth
value of that predicate is true if the change represented by the stereotype « substitute » to
which the tag ref is associated occurred, false otherwise. Formally, the predicate should
be "x occurred" or P (x), assuming that P (x) is the predicate "x occurred" and where x
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Figure 2.5: Example of a constraint of a stereotype

is one of the values of the tag ref. However, this value of the list of the tag ref, say x, is
used as a syntactic sugar for the atomic predicate P (x), where P (x) is the predicate "x
occurred"5. Again, if the stereotype models only one change, the condition can be shown
alone on the diagram and the pair notation can be omitted. To illustrate the use of the
constraint, the previous example can be refined. Assume that to allow the change with
reference encrypt-link, another change, simply referenced as change for the example,
has to occur. The following can then be attached to the link concerned by the change:

« substitute »

{ ref = encrypt-link }

{ substitute = (« encrypted », « Internet ») }

[change]

This example is shown in Figure 2.5. To express that two changes, referenced respec-
tively by change1 and change2, have to occur first in order to allow the change referenced
encrypt-link to happen, the constraint:

[change1 ∧ change2]

is added to the stereotype « substitute » modeling the change. If only one of both the
changes is requested, but not necessarily both of them, the constraint :

[change1 ∨ change2]

is added to the stereotype.

2.1.2.2 « add »

The stereotype « add » is similar to the stereotype « substitute » but, as its name indicates,
denotes the addition of new model elements. It has two associated tags, namely ref and

5A value of the tag ref could also be considered as an atomic proposition, also called propositional vari-
able. However, the option of an atomic predicate has been chosen because predicates can also represent
sets, which can also be expressed by a function. From a high level of abstraction, a function seems easier
to represent the predicate than having to keep as many propositional variables and their truth value as there
are values of tags ref. It will especially be useful later in the UMLseCh abstract syntax where the function
representing the predicate "ref occurred" will be defined.
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add. The tag ref has the same meaning as in the case of the stereotype « substitute ».
The tag add is equivalent to the tag substitute of a stereotype « substitute » but with
the semantic of an addition. Its value is thus a list pairs of model elements, each pair
representing an addition. The model elements of the pairs can either be represented as
a sequence of characters and be represented directly in the tagged values or the name of
a namespace if the additive model element is a complex model element. Again, complex
additive elements will require a particular behavior that will be described in Section 2.1.4.
The element e of a pair (e, e′) has a slightly different meaning for a stereotype « add ».
While with the stereotype « substitute », this element represents the model element to
substitute, with the stereotype « add » it represents the model element concerned by the
addition. That can be explained easily. With a substitution, a model element is substituted
by another model element of the same type. The model element to substitute hence is
present on the model when the substitution takes place and can either be expressed
in the pair representing the change or be the model element to which the stereotype is
attached. With an addition, no element is being substituted and the stereotype « add »
cannot be associated to a model element that does not exist yet. Instead, the model
element to which the stereotype « add » is attached or the model element e of the pair
(e, e′) is the "super-element" of the element being added. For example, considering all
types of UML diagrams, a class is super-element of a method or an attribute of that class,
a subsystem is a super-element of a class and a stereotype can be a sub-element of
a class, a link, a dependency or any other model element that can have stereotypes.
Again when the super-element to which the element is added is the element to which
the stereotype is attached, the element e of the pair representing additions, as for the
stereotype « substitute », can be omitted.

The stereotype « add » is a syntactic sugar of the stereotype « substitute », as a stereo-
type « add » could always be represented with a stereotype « substitute ». Indeed, from
an abstract point of view, adding a new model element consist of substituting the empty
model element ∅ by the new model element. More concretely, since the stereotype « add »
could not be attached to the empty model element (and the empty model element could
not really be used in a pair of a tag add either), adding a new model element consists of
replacing the set of model elements concerned by the addition by a new set containing all
the elements of the previous set plus the new model element. Formally, if s is the set of
model element and e the new model element, the new set is s′ = s ∪ {e}. An addition as
a substitution would then consists of substituting s by s′. This particularity will be visible
in the formal representation of UMLseCh, described in the following.

As for the stereotype « substitute », the application of a change modelled by a stereotype
« add » must leave the resulting model in a consistent state. It is thus also necessary
to have values of the same type for both the elements of a pair (e, e′) representing an
addition or, if e is omitted, for e′ and the elements of the set to which it is added. How-
ever, adding a new element might bring more difficulties and consistency problems than
with a substitution, especially with dynamic structure diagrams such as activity or state
diagrams. This comes from the fact that adding new elements might change the base
structure of the diagram or the relations between the elements of the diagram while a
substitution just change one element by another of the same type. The problems that
can arise from adding a new model element as well as the possible workarounds will be
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presented further in this chapter. Rules defining diagrams consistency will also be given.

The stereotype « add » also has a list of constraints formulated in first order logic, which
represents the same information as for the stereotype « substitute ».

2.1.2.3 « delete »

The stereotype « delete » is similar to the stereotypes « substitute » and « add » but, ob-
viously, denotes the deletion of a model element. It has two associated tags, namely ref
and delete, which have a similar meaning as in the case of the stereotypes « substitute »
and « add », i.e. a list of reference names and the list of model element to delete re-
spectively. Note that here, the elements of the list used as value of the tag delete are
not shown as pairs, since it just represents the model element to delete. If the list is
empty, because the element to delete is the element to which the stereotype « delete »
is attached and this stereotype models only one possible deletion, the tag delete can be
omitted. On the other hand, if the stereotype « delete » models more than one deletion
and the element to which the stereotype is attached is concerned by the change, this
element must be shown in the list of the tag add. This difference from the stereotypes
« substitute » and « add » ensure that the list of the tag add will always have the same
size as the list of the tag ref.

As for the stereotype « add », the stereotype « delete » is a syntactic sugar of the stereo-
type « substitute ». Indeed, it could always be represented with a stereotype « substitute »
since deleting a model element could be expressed as the substitution of the model ele-
ment by the empty model element ∅. It could also be seen as the substitution of the set
containing the model element to delete by a new set that is a copy of the initial set without
the element to delete. As opposed to the stereotype « add », the stereotype « delete »
could, if used as « substitute », replace directly the concerned model element by ∅, since
it would be attached to the model element to delete or the latter would be expressed
in the pair representing the deletion. Deleting a model element might also bring similar
consistency problems as in the case of an addition. As for the stereotype « add », these
problems and the possible workarounds will be developed further in this chapter and rules
defining diagrams consistency will be given in Chapter 2.5.

The stereotype « delete » also has a constraint formulated in first order logic, which rep-
resents the same information as for the stereotypes « substitute » and « add ».

2.1.2.4 « substitute-all »

The stereotype « substitute-all » is an extension of the stereotype « substitute ». It de-
notes the possibility for a set of model elements of same type and sharing com-
mon characteristics to evolve over time and what are the possible changes. In this
case, « substitute-all » will always be attached to the super-element to which the sub-
elements concerned by the substitution belong. As the stereotype « substitute », it has
the two associated tags ref and substitute, of the form { ref = CHANGE-REFERENCE }
and { substitute = (ELEMENT1, NEW1), . . . , (ELEMENTn, NEWn) }. The tags ref has the
exact same meaning as in the case of the stereotype « substitute ». For the tag substitute
the element e of a pair representing a substitution does not represent one model element
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Figure 2.6: Example of stereotype « substitute-all »

but a set of model elements to substitute if a change occurs. This set can be, for ex-
ample, a set of classes, a set of methods of a class, a set of links, a set of states, etc.
All the elements of the set share common characteristics. For instance, the elements to
substitute are the methods having the integer argument "count", the links being stereo-
typed « Internet » or the classes having the stereotype « critical » with the associated tag
secrecy. Again, in order to identify the model element precisely, we can use, if necessary,
either the UML namespaces notation or, if this notation is insufficient, the abstract syntax
of UMLseCh. To replace, for example, all the links stereotyped « Internet » of a subsys-
tem so that they are now stereotyped « encrypted », the following can be attached to the
subsystem:

« substitute-all »

{ ref = encrypt-all-links }

{ substitute = (« Internet », « encrypted ») }

This example is shown in Figure 2.6.

A pair (e, e′) of the list of values of a tag substitute here allows us a parameterization of
the values e and e′ in order to keep information of the different model elements of the
subsystem concerned by the substitution. To allow this, variables can be used in the
value of both the elements of a pair. The following example illustrates the use of the
parameterization in the stereotype « substitute-all ». To substitute all the tags secrecy of
stereotypes « critical » by tags integrity, but in a way that it keeps the values given to the
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tags secrecy (e.g. { secrecy = d }), the following:

« substitute-all »

{ ref = secrecy-to-integrity }

{ substitute = ({ secrecy = X }, { integrity = X }) }

can be attached to the subsystem containing the class diagram.

The stereotype « substitute-all » also has a list of constraints formulated in first order logic,
which represents the same information as for the stereotype « substitute ».

2.1.2.5 « add-all »

The stereotype « add » also has its extension « add-all », which extends the stereotype
« add » in the same way as « substitute-all » extends the stereotype « substitute ».

2.1.2.6 « delete-all »

The stereotype « delete » also has its extension « delete-all ».

2.1.2.7 « change »

The stereotype « change » is a particular stereotype that represents a composite change.
It has two associated tags, namely ref and change.

These tags are of the form { ref = CHANGE-REFERENCES } and { change = CHANGE-
REFERENCES1, . . ., CHANGE-REFERENCESn }, with n ∈ N. The tag ref has the exact
same meaning as in the case of a stereotype « substitute ». The tag change, here, takes
a list of lists of strings as value. Each element of a list is a value of a tag ref from
another stereotype of type change6 Each list thus represents the list of sub-changes of
a composite change modeled by the stereotype « change ». Applying a change modeled
by « change » hence consists in applying all of the concerned sub-changes in parallel.

Any change being a sub-change of a change modeled by « change » must have the
value of the tag ref of that change in its condition. Therefore, any change modeled by
a sub-change can only happen if the change modeled by the super-stereotype takes
place. However, if this change happens, the sub-changes will be applied and the sub-
changes will thus be removed from the model. This ensures that sub-changes cannot be
applied by themselves, independently from their super-stereotype « change » modeling
the composite change.

An example of the use of a stereotype « change » will be given in Section 2.1.4 where the
use of complex additive elements will be described.

6By type change, we mean the type that includes « substitute », « add », « delete » and « change ».
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2.1.3 Complex Substitutive Elements

As mentioned above, using a complex model element as substitutive element requires
a syntactic notation as well as an adapted semantics. An element is complex if it is
not represented by a sequence of characters (i.e. it is represented by a graphical icon,
such as a class, an activity or a transition). Such complex model elements cannot be
represented in a tagged value since tag definitions have a string-based notation. To
allow such complex model elements to be used as substitutive elements, they will be
placed in a UML namespace, described in Section 2.1.5.2. The name of this namespace
being a sequence of characters, it can thus be used in a pair of a tag substitute where
it will then represent a reference to the complex model element. Of course, this is just a
notational mechanism that allows the UMLseCh stereotypes to graphically model more
complex changes. From a semantic point of view, when an element in a pair representing
a substitution is the name of a namespace, the model element concerned by the change
will be substituted by the content of the namespace, and not the namespace itself. This
type of change will request a special semantics, depending on the type of element, which
will be detailed by means of examples further in this section.

To define the behavior of a complex substitution, we need to differentiate two types of
model elements. The first type includes the model elements that connect together two
other model elements. We call these elements connectors. For example, messages,
transitions, links or dependencies are connectors. Concretely, a connector has the two
connected model elements and additional properties, such as a name, stereotypes or
boolean conditions. In our subset of UML, all connectors have at least a name, since the
elements are all named elements. More precisely, they all have an attribute "name", but
this attribute could be the empty string, which represents an unnamed element. Other
properties depend on the type of connector. For example, a link as a set of stereotypes.
A transition has an event and a guard. Changing the properties of a connector does
not require any namespace since their notation is based on strings and thus they are
not complex model elements. On the other hand, to model a possible substitution of
a connector by another one connecting different model elements, namespaces are re-
quired and it is necessary to represent the connected model elements on the graphical
representation of the substitutive element. The following notation is thus defined for a
substitutive connector : a connected modeled element is represented by a rectangle with
the name of the element inside. Again, the graphical representation that we provide is
an abstract representation. At the concrete level, the usage will depend on the possibil-
ities that the chosen tool can offer. Modeling such a change will not always be possible
and will depend on the context. For example, it will not be possible if at least one of the
connected model elements have no name or if it cannot be identified on the diagram.
However, this situation should be rather unlikely. It will not always be possible either with
state and activity diagrams, because certain tools use an abstract top state, as the one
used for the UMLsec and UMLseCh abstract syntax. This state, usually used for techni-
cal reasons, contains the elements of the statemachine and those elements cannot be
moved into another namespace. More details, as well as examples, will be given further
in this section. The second type of model elements includes all the other elements that
are not connectors. These elements do not request any particular semantics to model a
change. Examples will also be given in the following.
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Figure 2.7: Model the possible substitution of a class

We can illustrate the use of namespaces to store complex substitutive elements with
a simple case presented in the following example. Assume a class diagram with two
classes, A and B, and a dependency dep between them. The class A has the attributes
a, b and c and the methods m1 and m2 and the class B has the attributes d, e and f and
the methods n1 and n2. The change modeled for this example consists in replacing the
class B by the class C, which has the attributes g and h and the methods k1 and k2. The
modeling of this change as well as its application is shown in Figure 2.7. Certain changes
could however be simpler and thus not require complex model elements. Therefore, one
should ensure that using a complex model element is imperative. Note that some parts
of model elements might not be accessible to the UMLseCh notation. This is for example
the case for the name of a named element. Indeed, the name of a named element is
defined as an attribute of type String in [44]. However, the UMLseCh profile defines the
values of the tags as pair of named elements. This means that only named elements can
evolve and be used as new model elements.

The previous examples illustrated simple cases since the substitutive model elements
could be easily stored in a namespace and be integrated in the model after the substitu-
tion. As mentioned above in this section, this will not be the case with the connectors. To
illustrate the use of namespaces with connectors, we can consider the following exam-
ple. Assume a class diagram with three classes, namely A, B and C and a dependency
dep, stereotyped « call », between A and B. A has the attribute a1, a2 and a3 and the
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methods m1 and m2. B has the attribute b1 and b2 and the methods n1 and n2. Finally, C
has the attribute c1, c2 and c3 and the method k1. For this example, the possible change
that we model is a substitution of the dependency dep by a new dependency dep′, also
stereotyped « call », that now connects B and C. This is shown in Figure 2.8. Note that
the namespace contains only the dependency, not the classes B and C. Again, the pos-
sibility to model such a change will depend on the tool that is used and the functionalities
that it offers7. For example, as mentioned above, it will not be possible if at least one
of the connected elements cannot be identified on the graphical notation, although this
situation is unlikely. In particular, this applies to statemachines or activity diagrams. How-
ever, using a state in another namespace as substitutive model element will be possible
since states are not connectors and they do not involve any cross-reference8. An exam-
ple of this is shown in Figure 2.11 of Section 2.1.4, where states are placed in a package,
although, for different reasons, this example models a wrong addition. Because of the
requirements defined above, modeling possible changes with connectors as substitutive
model elements will thus be avoided. Deleting the connector and adding a new one
with the intended properties will be preferred to model the possible change. This can be
model with a composite change, described in Section 2.1.2. Addition and deletion will be
discussed in the following sections. Alternatively, one can also use an expression based
on the abstract syntax of transitions, as the value of the element e′ in a pair (e, e′) of a
tag substitute, since it uses sequences of characters only. In this case, the readability
will be slightly reduced but no complex element and thus namespace will be required.
Considering the example of Figure 2.8, the value of e′ could be replaced by the following
expression:

d = (”dep′”, A,B,B, « call ») d ∈ Dep(CD),

where CD is the class diagram, or this expression could be placed in a comment note
attached to the concerned stereotype.

2.1.4 Complex Additive Elements

Complex additive elements also require a specific semantics. As for the substitutions, we
will differentiate two types of model elements, the connectors and the rest of the model
elements. In addition, our subset of diagrams is partitioned into two groups: the static
structure diagrams, which include the Class diagram, the Object diagram and the Deploy-
ment diagram, and the dynamic behavior diagrams, which includes Statechart diagrams,
Activity diagrams and Sequence diagrams. For model elements that belong to static
structure diagrams and that are not connectors, no particular semantics is necessary to
model a possible addition. On the other hand, additions will be slightly more complicated

7With ArgoUML, this example can be modeled in the following way: assuming that the class diagram has
been modelled, one creates a dependency between the classes B and C and then, creates a package. The
namespace of the dependency can then be change to the package. Once it is done, the new dependency can
be deleted from the diagram and the name of the package (i.e. the namespace) containing that dependency
can be used as a reference in the value of the tag substitute. This solution however will not work with
statemachines or sequence diagrams

8A cross-reference here means that the elements used as connected model elements refer to elements
that belong to another namespace. Replacing a connector by another one having the same connected
elements would thus not involve any cross-reference either, but this will be covered by the string-based
modification of the connector properties.
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Figure 2.8: Model the possible substitution of a dependency

for connectors and dynamic behavior diagrams. As mentioned in Section 2.1.2, certain
model elements also require to be integrated to the model after being added. This means
that they need to be connected to the rest of the diagram, otherwise it would leave the
model in an inconsistent state. This category of model elements includes connectors of
all types of diagrams and any model element from dynamic behavior diagrams, with one
exception described below. In certain cases, we can ensure the integration of the new
added model elements with a special behavior that we call merge. This operation will
be described further in this section. Other situations will require more complex additions,
which will be detailed in Section 2.1.5.

For static structure diagrams, as mentioned above, adding a model element that is not
a connector is easy. Those model elements are, for example, Nodes, Classes or Com-
ponents. In this case, modeling the change thus simply consists in placing the model
element into a namespace and use the name of this namespace as a reference in the
relevant pair of the tag add. Such changes are trivial.

The previous examples illustrated a simple case since the additive model elements be-
long to a static structure diagram and are not connectors. It could thus be easily stored
in a namespace and be integrated in the model after the addition. Some situations will
be different and will require the merge behavior . The merge, as its name indicates, adds
the new model elements and merges the parts of the additive model elements that are
already present on the model. This behavior will be used automatically if elements from
the existing model are included into the additive part. To illustrate the use of a merge,
we can consider the following example. Assume a Statechart diagram with three states,
namely A, B and C, and two transitions, one from A to B and one from B to C. The
initial and final states are also present on the diagram. Assume now that one wants to
model the possible addition of a transition from C to B. This can be modeled by placing
two states, B and C, and a transition from C to B in a namespace9. The name of this

9As explained, this namespace will be a state machine at the concrete level.
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namespace is then used as the element e′ of the pair (e, e′) representing the relevant ad-
dition in the tag add10. This model as well as the result of applying the change is shown
in Figure 2.9. Note that if final states are placed in the namespace containing the additive
elements, they will not be merged with the existing final states, since a statemachine can
have more than one final state. This property also stands for activity diagrams.

There exists one exception to the general principles mentioned in the previous para-
graphs. This exception concerns lifelines of Sequence diagrams. Indeed, although Se-
quence diagrams are dynamic behavior diagrams, lifelines can be added alone since they
do not need to be directly connected to the rest of the diagram. They can thus be added
in a similar way as the non-connectors elements of static structure diagrams. To model
a possible addition of a lifeline to a Sequence diagram, we will thus place this lifeline into
an namespace and use the name of this namespace as a reference in the pair of the tag
add representing the change. Applying the change will then simply consist in adding the
lifeline contained in the namespace to the model. An example of such a change is shown
in Figure 2.10, where a lifeline, named C, could possibly be added, if the change occurs,
to a Sequence diagram containing two lifelines, A and B.

2.1.5 Problems with Stereotypes « add » and « delete »

As mentioned in Section 2.1.2, adding or deleting a model element might generate prob-
lems or difficulties that do not exist with a substitution. This is mainly due to the fact
that a substitution simply means to change a model element by another one of the same
type. On the other hand, an addition of a model element means, in addition to adding
the element, to adapt the new model in order to integrate the new element. Deleting also
requests to adapt the model resulting from the deletion. This section illustrates such situ-
ations by means of examples. More generally, both the addition and the deletion will have
to respect constraints to ensure the diagrams consistency. These rules will be detailed in

10This principle could also be used with substitutions. However, even if it could be useful in certain cases,
it is not indispensable. For simplicity reasons, it will not be defined here.
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Figure 2.10: Example of an addition of a lifeline in a sequence diagram

the formal foundations of the notation in the following.

2.1.5.1 The case of « add »

To illustrate a case of inconsistency created by an addition, we can consider the following
example. Assume a State Diagram with four states: the initial and final states, and the
states A and B. In addition, the possibility of adding a new state, called C, is considered.
This new state would directly follow the state B and precede the final state. This can be
seen as adding a state on the transition from B to the final state. A stereotype « add »,
together with the related information in the tagged values, could thus be attached to the
subsystem. However, applying the change modeled by this stereotype would lead to the
situation shown in Figure 2.11, which presents an inconsistent diagram (the state C is
pending on the diagram and is not connected to any part of it) and represent a change
obviously different from the one initially intended. This problem actually comes from the
fact that, although intuitively the change can be seen as the addition of a state on the
last transition, the concrete addition will just add a state disconnected from the rest of
the diagram. This follows the correct semantics of the stereotype. Indeed, the stereotype
« add » only models the addition of the state C, and nothing else. But the change that
was intended was the addition of the state C, the modification of the transition between
the state B and the final state so that it is now connecting the state B to the state C, and
finally the addition of a transition between the state C and the final state. It is hence a
wrong modeling of the intended change more than a wrong semantics of the stereotype
« add ». To model the change correctly, several possibilities exist.

A first solution would be to substitute the state B by a sequential composite state contain-
ing and arranging the additional elements in the intended way. To model such a change,
a stereotype « substitute » with the related information can be attached to the state B of
the statechart diagram. This situation is shown in Figure 2.12. Following the semantics
of the stereotype « substitute » in the case of complex substitutive elements, presented in
Section 2.1.3, the application of this change would generate a result rather close to the in-
tended one. Concretely, the last part of the statechart diagram would be contained in the
composite state, which would hence represent a sub-diagram. The result obtained after
the substitution and the result initially intended are equivalent, since when the composite
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Figure 2.11: Inconsistent diagram resulting from an inappropriate addition

state is entered, the flow will visit the state B then he state C, then exit the composite
state and leave the diagram through the final state. However, although both the dia-
grams are equivalent, the result remains slightly different from the one expected11. Other
possibilities exist.

Another solution would be to use the merge operation. However, as explained in Section
2.1.4, the final states will not be merged. In this case, a final state is necessary in the
additive namespace in order to model the transition from the state C to the final state.
Therefore, after the merge, the remaining final state and final transition from the state B
have to be deleted. These changes should also happen together, since they represent
one global change, and thus should be modeled by a stereotype « change » representing
composite changes.

Finally, another solution would be to model the change with three stereotypes, each of
them modeling one of the three changes necessary to add the state C. These three
changes, as mentioned above, are the addition of the state C, the modification of the
transition between the state B and the final state so that it is now connecting the state C to
the final state and finally, the addition of a transition between the state B and the state C.
However, this solution will work only if the three changes happen simultaneously. This
can be modeled by using a composite change, as shown in Figure 2.13. For simplicity
reasons, we name the final state f. Note that this solution is not simpler than the solution
using the merge.

As mentioned above, the changes modeled by stereotypes « add » will have to respect
additional constraints to ensure the consistency of the diagram, otherwise the model will
not be allowed. This will be described in Section 2.5.

11Provided that the notation accepts the possibility for the two elements of a pair of a tag substitute to be
of different types, the namespace having the substitutive elements could contain the state B, the state C
and the transition between them. This solution is however not allowed by the current version of UMLseCh.
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Figure 2.12: A solution to the problem of Figure 2.11

D4.2 Formally founded automated security analysis
version 1.3 | page 28/167



«substitute»

{ref = sub−trans}

{substitute = (t = (B,nil,true,Nil,C))}

A

[add−state−C]

B

«add»

{ref = add−state, add−trans}

{add = SubState, (t=(C,nil,true,Nil,f))}
[(add−state, add−state−C), (add−trans, add−state−C)]

«change»

{ref = add−state−C}

{change = {add−state,add−trans,sub−trans}}

C

A

B

System

Where t     Transition

C

SubStatens

System

f

Figure 2.13: Another solution to the problem of Figure 2.11

2.1.5.2 The case of « delete »

Applying a change modeled by a stereotype « delete » could also leave the model in an
inconsistent state. For example, deleting a lifeline of a sequence diagram connected to
another lifeline by messages would result to the situation shown in Figure 2.14. No extra
semantics have been defined for the behavior of the application of a change modeled
by a stereotype « delete ». Applying a deletion modeled by a stereotype « delete » on a
model element will thus not be allowed if it does not fulfill the constraint defined in Section
2.5, which is the case of the stereotype « delete » of Figure 2.14.

2.2 General Concepts

Before defining the formal representation of the UMLseCh diagrams and the semantics
of the application of a change, we need to define general principles. The UMLsec and
UMLseCh abstract syntax are both based on n-tuples and sets and thus, all of the con-
cepts will be described using set theory.

The most general concept that we define is the concept of UML named element, which
is an element that "may have a name" [44]. We define the set Elements as the set of
the instances of the named model elements defined on a model instance. In the abstract
syntax, the model elements will all be represented with their own representation using
n-tuples. At this point, we define the general representation of a UML named element.

Definition 1. A UML named element is a tuple e ∈ Elements such that
e = (e1, . . . , en), with n ∈ N, where the k first elements, with k ∈ N, 1 ≤ k ≤ n, are
names and the n− k other elements are named elements or sets of named elements. If
k = 0, the named element has no name. If k ≥ 1, the named element has k names and
is defined by e = (e1, . . . , ek, . . . , en) where e1, . . . , ek are names.
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Figure 2.14: Incorrect diagram resulting from an unallowed « delete »

In addition to named elements, we can define namespaces. A namespace is defined in
[44] as an abstract container of named elements, the namespace being itself a named el-
ement. We assume a set Namespaces that contains all the namespaces of the instance
of a model and give the following definition.

Definition 2. A UML namespace is a pair (n, elts), with n ∈ String the name of the
namespace and elts ⊆ Elements a set of model elements contained in the namespace.

Since namespaces are themselves named elements, they can be contained in name-
spaces. We thus define a top namespace as a namespace that is not contained in any
other namespace. In addition, any named element is contained, possibly in a nested way,
in a top namespace.

Definition 3. A top namespace is a namespace that is not contained in any namespace.
All of the UML named elements are contained directly or indirectly in a top namespace.

The set StereoNm is the set of stereotype names. This set includes the UMLseCh
stereotypes, such as « change », « substitute » or « delete-all », as well as the UMLsec
stereotypes, such as « critical », « fair exchange » or « secure dependency ». It also in-
cludes some of the UML stereotypes, such as « call » and « send », and the user defined
stereotypes. We differentiate the stereotype definitions from the stereotype instances. A
stereotype definition is a stereotype name s ∈ StereoNm. We assume a function that
maps a stereotype definition to its associated tag definitions. A stereotype instance is a
stereotype applied on a model element in the instance of a system. It has its owned as-
sociated tagged values for each tag definition. The set Stereotypes represents the set
of all instances of stereotypes. A stereotype instance must be an instance of a stereotype
definition, as defined in the following.

Definition 4. An instance of a stereotype is defined as sτ ∈ Stereotypes, where s ∈
StereoNm is the stereotype definition of sτ .
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This simply ensures that any stereotype instance is an instance of a stereotype defined in
the set StereoNm. Note that by stereotype in the following, we always mean stereotype
instance. We will explicitly precise when an element refers to a stereotype definition. We
also define a function τ that returns the stereotype definition of a stereotype instance.

Definition 5. Let s be a stereotype definition, such that s ∈ StereoNm and sτ be a
stereotype instance, such that sτ ∈ Stereotypes and such that sτ is an instance of the
stereotype definition s, as defined in the definition 4, τ is defined as:

τ : Stereotypes→ StereoNm
τ(sτ ) = s

The semantics of the stereotype definitions can be refined by defining particular types.
For example, the stereotypes of UMLsec could be considered as being of the type secu-
rity, which represents stereotypes modeling security requirements. In the following, we
will define the type change for the stereotype definitions of UMLseCh. More precisely,
all of the stereotypes defined in Figure 2.1 are of the type change. Formally, the set
ChangeNm represents the set of stereotype definitions of type change. It is defined as
follow.

Definition 6. The set ChangeNm ⊂ StereoNm is the set of definitions of stereotypes
of type change, such that:

ChangeNm ≡ {« change »,« substitute », . . . ,« delete-all »}12

The stereotypes of type change thus also belong to a particular set. The set Change is
the set of instances of stereotypes of type change, such that
Change ⊂ Stereotypes. Formally, a change stereotype can hence be precisely speci-
fied by the following definition.

Definition 7. A stereotype of type change is a stereotype instance sτ ∈ Change such
that s ∈ ChangeNm.

For tag definitions, we focus on the instance level because the elements that will be
used for the application of changes are tagged values. These values, associated to
tags on the instance of a model, are sufficient to apply the concepts presented in this
chapter. However, to completely define tags, assume the set TagNm of tag definitions. It
includes all the tag definitions of the stereotype definitions. Formally, we have TagNm ≡
∪stagnm(s), ∀s ∈ StereoNm, where we suppose a function tagnm that return the tag
definitions of a stereotype definition. On the other hand, the set Tag is the set of the tags
of stereotype instances. Any tag associated to an instance of a stereotype applied on
a model element belongs to this set. As for stereotypes, the semantics of tags can be
refined by giving them a type. In particular, the tags associated to UMLseCh stereotypes
will be considered as tag of type change. The set TagChange is the set of the tags of
such type. As described in Chapter 2.1, the tags that can be attached to stereotype of
type change are the tags ref, change, substitute, add and delete. Therefore, the set Tag
can be disjointly partitioned into the sets TagRef of instances of tag ref and TagTr of

12The complete list of stereotypes can be found in Figure 2.1 where the UMLseCh profile is defined
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instances of tag change, substitute, add and delete. We also define the set Values of
values of the tags. This set contains all the values that are given to tags on an instance
of a model. Formally, the type of tags change can be defined as follow.

Definition 8. Let tags(s) be a function that returns the tags of a stereotype s. A tag
t : t ∈ tags(s) is of type change if s ∈ Change.

The function tags will be defined in the following. We can also refine the UMLseCh
stereotypes since they only have associated tags of type change.

Definition 9. Let tags(s) be a function that returns the tags of a stereotype s. If s ∈
Change, we have tags(s) ⊆ TagChange.

The values associated to a tag ref of a change stereotype represent a list of labels such
that each element of this list can be used as a reference of the change modelled by the
stereotype and its associated tagged value, which is the value of the list in the tag of type
change at the same position as the label in the list of the tag ref. Such a label provides
a means to identify a change and thus must be unique among the values of all of the
tags ref associated to stereotypes of a model instance. This constraint is verified by the
following definition.

Definition 10 (Unicity of the ref values). Let TagRef be defined as
TagRef ≡ {t1, t2, . . . , tk, . . .} and υ(n) be a function that returns the value of a tag
n. Assume T ≡ (υ(t1) ] υ(t2) ] · · · ] υ(tk) ] · · · ) the multiset containing the values
of all the tags ref associated to stereotypes of a model instance and represented as
T ≡ {x1, x2, . . . , xk, . . .}. Then ∀i, j ∈ N such that i 6= j, we have xi 6= xj .

The function υ that returns the value of a tag, as well as the function σ that returns the
name of a tag, will be defined in the following. In the next section, we will also define
the formal representation of stereotypes and tagged values. These representations will
extend the abstract syntax of UMLsec. We also need the set of boolean values and the
set of strings for signatures of functions defined below. We thus define the set Boolean
of boolean values as Boolean ≡ {true, false}. We also assume the set of boolean
expressions BoolExp. The set String is the common set of sequences of symbols and
digits.

2.3 New Elements for the UMLseCh Abstract Syntax

To provide formal semantics of the changes modeled by the UMLseCh stereotypes, some
additional concepts need to be added to the abstract syntax. Stereotypes are mentioned
in the abstract syntax of UMLsec, but no precise representation is given. More pre-
cisely, only a set of stereotype names is defined. For UMLseCh, the situation is different,
because the semantics of the changes need to directly use the stereotypes and their as-
sociated tagged values. We thus define the abstract representation of a stereotype as
follow. A stereotype s ∈ Stereotypes is a tuple given by s = (name, tag, constraint)
where:
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• name ∈ StereoNm is the name of the stereotype;

• the set tag ⊆ Tag is the set of associated tags; and

• constraint ∈ BoolExp is the constraint of the stereotype.

Since we define stereotypes as tuples, we can consider the inductive definition of a tuple
from the Kuratowski’s definition of ordered pairs and thus define the kth element of the
tuple n as πk(n), ∀k ∈ N. With such a representation, it is easy to define the function
tags(s) that return the set of tags of a stereotype s, mentioned in the previous section.

Definition 11. Let s be a stereotype such that s ∈ Stereotypes, its set of tags is given
by the function:

tags : Stereotypes→ P(Tag)
n 7→ π2(n)

Note that P(X) represents the power set of X. Following the same principle, the con-
straint associated to a stereotype can be obtained as easily as for the set of tags. Con-
cretely, we have the following function.

Definition 12. Let s be a stereotype such that s ∈ Stereotypes, its constraint is given by
the function:

cons : Stereotypes→ BoolExp
n 7→ π3(n)

The representation of a stereotype defined above also allows us to refine the definition of
a stereotype of type change. More precisely, as defined in Figure 2.1 in Chapter 2.1, a
stereotype of type change must have two associated tags and an associated constraint.
Formally, we have the following.

Definition 13. ∀s ∈ Change such that s = (name, tag, constraint), we have:

tag ≡ {ref, change}

where ref ∈ TagRef and change ∈ TagTr.

This definition restricts the use of a stereotype of type change and ensure that any of
such a stereotype has exactly two tags, one of type ref and one of type change. We also
define two functions ref and change, which return respectively the tag of type ref and the
tag of type change of a stereotype s, such that s ∈ Change.

Definition 14. ∀s ∈ Change, its tag of type ref is given by the function: ref : Change→
TagRef n 7→ e where e ∈ tags(n) ∩TagRef .

Definition 15. ∀s ∈ Change, its tag of type change is given by the function: change :
Change→ TagTr n 7→ e where e ∈ tags(n) ∩TagTr.

Note that we can ensure the results of the functions defined above, since a stereotype
of type change has exactly two tags, one in TagRef and one TagTr, and TagRef ∩
TagTr = ∅.
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In [44], stereotypes are described as elements that can extend the semantics of any
other model element. In the UMLsec abstract syntax, however, only certain model ele-
ments contain stereotypes. This restriction, justified in the context of UMLsec, has to be
overcome in the abstract syntax of UMLseCh, since the stereotypes semantics represent
possible evolution, which can be attached to any model elements. Precisely, the abstract
representation of elements that do not contain stereotypes in UMLsec, such as states or
transition, will be extended so that they can contain stereotypes. Note, however, that this
extension does not concern all model elements. In particular, certain model elements,
such as attributes or operations of a class, will not be extended and thus will not have any
stereotype. The abstract of UMLseCh will be presented further in this Chapter.

Tagged values also need to be given a formal abstract representation. In UMLsec, a
function mapping a stereotype to its associated tagged values and constraint is assumed,
but again, no precise representation is defined. In UMLseCh, tags of stereotypes of type
change represent an important information since they contain the information describing
the change to apply. We define a tag as an ordered pair t ∈ Tag given by t = (tag, value),
where:

• tag ∈ TagNm, is the name of the tag; and

• value ⊆ Value, is the set of values associated to the tag.

Our representation of tags is then equivalent to the definition of tagged values in the UML
specification. We also define two functions, σ and υ, mentioned above, that we can apply
on a tag. Assume a tag n, such that n ∈ Tag, the function σ(n) returns the name of
the tag n and the function υ(n), mentioned in the previous section, returns the value of
the tag n. As for stereotypes, since tagged values are represented as ordered pairs, it is
easy to define those functions following the Kuratowski’s definition of ordered pairs.

Definition 16. Let t be a tag such that t ∈ Tag, its name is given by the function:

σ : Tag→ TagNm
n 7→ π1(n)

Definition 17. Let t be a tag such that t ∈ Tag, its set of values is given by the function:

υ : Tag→ P(Value)
n 7→ π2(n)

As defined in the UML specification [44], a tagged value can only be represented as an
attribute defined on a stereotype. Therefore, we follow the specifications by attaching a
set of tags only to stereotypes in our abstract syntax. If the stereotype does not have
any associated tag, the set tag is simply the empty set ∅. We also define the empty tag
written ∅, such that ∅ ∈ Tag and all its relevant subsets.

We can refine the value of the tags substitute, add and delete. These tags have a list of
pairs of the form (e, e′) as value, where e is the model element concerned by the change
and e′ is the new model element. Note that although certain cases of the instance level,
described in Section 2.1.2, will allow the elements of the list to be single elements or
the list itself to be omitted, this is just syntactic sugar. For the formal semantics, we will
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assume that the elements can all be identified from the list of values given by the tags.
The value of a tag t of type ref is an ordered set of strings such that υ(t) ⊂ String. The
value of a tag t of type change is an ordered set of sets of strings, such that ∀l ∈ υ(t), we
have l ⊆ T , where T is the set defined in definition 10. Tagged values of stereotypes of
type change have another particularity. They are in the form of lists where the order of the
elements matter, since elements of same subscript in each list are related and represent
one change modeled by the stereotype. Before we can define this precisely, we need to
refine the definition of the empty tag ∅.

Definition 18. The set of values of the empty tag ∅ is such that ∀t ∈ Tag, |υ(∅)| = |υ(t)|

We can now define the set of values of a tag of type change as an ordered set and give
an additional condition to stereotypes of type change so that the tagged values can be
associated together. This condition is that the ordered sets have the same arity.

Definition 19. Let s be a stereotype such that s ∈ Change and tags(s) = {t1, t2}. The
value of the tags t1 and t2 are ordered sets such that |υ(t1)| = |υ(t2)|. We also assume
a function g that returns the kth element of the set of values of a tag of type change t, ∀k
1 ≤ k ≤ |υ(t)| and a function f that returns the position of an element in the set of values
of a tag of type change. These functions will be defined in the next section.

Finally, namespaces need to be included in the UMLseCh abstract syntax. As mentioned
in Section 2.1.5.2, a namespace does not exist by itself. It is modeled by an abstract
metaclass and only takes the form of a model element, such as a class, a statemachine
or a package, at the concrete level. However, as for the graphical notation, we need to
be able to represent namespaces in the abstract syntax in a general form and at a high
level of abstraction. Since all of the UMLseCh model elements are named elements that
belong to the set Elements and following the definition 2, a namespace can simply be
define as an ordered pair n = (sname, elts) ∈ Namespaces given by:

• a namespace name sname ∈ String; and

• a set elts ⊂ Elements of named elements.

Again, a function that returns the set of named elements of a namespace can easily be
defined. Note that all of the named elements defined here have a name based on string
representation, even if they belong to a different set, such as StereoNm. It is thus correct
to consider the name sname of a namespace as an element of String.

Definition 20. Let ns be a namespace such that ns ∈ Namespaces, its set of named
elements is given by the function:

elts : Namespaces→ P(Elements)
n 7→ π2(n)

Theoretically, any UML named element that can contain other UML named elements is
a namespace. This concerns a large part of the model elements of our simplified UML
since many of them are namespaces. However, although these model elements are
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namespaces, they will not be represented in the form described above because this form
is too abstract for some of the concepts that will be required in the following. All of the ele-
ments will thus be defined with their own representation, extending the UMLsec abstract
syntax in order to include the UMLseCh concepts. As mentioned above, these model
element representations are defined with n-tuples. The general form for namespaces,
defined above, will nevertheless be useful for certain cases that will describe the applica-
tion of a change at the highest level of abstraction. It is therefore useful to have a function
mapping a namespace in its model element representation to the general representation
of namespaces. This is defined in the following.

Definition 21. Let e be a namespace in its model element representation, such that
e = (e1, . . . , en), as defined in the definition 1, with n ∈ N, e ∈ Elements and ek ∈
Elements ∪ P(Elements), ∀k : 1 ≤ k ≤ n. The function ns, which gives the general
representation of e, is given by:

ns(e) = (sname, elts)

where sname ∈ {e1, . . . , ek}, with k ≥ 1 the number of names in e, as defined in the
definition 1, or sname is the empty name ∅ if k = 0, is the name of e and elts ≡ s1 ∪ · · · ∪
sn−k given, ∀i 1 ≤ i ≤ n− k, by:

• si = ei+k, if ei+k is a set;

• si = {ei+k}, if ei+k is a model element; and

• si = z1∪· · ·∪zl, if ei+k is a diagram of the form D = (d1, . . . , dl) ∀l ∈ N and where,
∀j 1 ≤ j ≤ l, zj = dj if dj is a set and zj = {dj} if dj is not a set13.

2.4 General Application of a Change

At the highest level of abstraction, it is possible to simply represent a change using the
concepts defined in Section 2.2 and 2.3. Assume a function space that returns the names-
pace n ∈ Namespace of a model element e, with e ∈ Elements, or the model element
e itself if e is not contained in any namespace14. Each change, namely a substitution, an
addition or a deletion, can easily be defined as follow.

Definition 22 (Local substitution). Let e be a UML model element and e′ the substitutive
model element of e, such that e, e′ ∈ Elements, and letN ∈ Namespaces, such thatN =
(n, S), with n a name of e and S ⊂ Elements, be the namespace in which e is contained,
such that N = space(e). A substitution of e by e′ in N is defined as (S \ {e}) ∪ {e′}.

Definition 23 (Local addition). Let e be a UML model element and e′ the set of additive
model elements (which may contain only one element if only one element is added) to add

13This condition is necessary to apply ns on subsystems. See Section 2.5 for the abstract syntax of
subsystems

14In our subset of UML, this second possibility concerns subsystems.
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in e, such that e ∈ Elements and e′ ⊂ Elements, and assume ns(e) the namespace gen-
eral representation of e, such that ns(e) = (n, S), with n a name of e and S ⊂ Elements.
An addition of e′ in e is defined as S ∪ e′.

This definition of an addition provides an automatic support of the merge behavior de-
scribed in Section 2.1.4. Indeed, assume that e′ is a set of instances of model elements,
such that e′ = {e′1, e′2, . . . , e′k−1, e

′
k, e
′
k+1, . . . , e

′
n}, with e′i ∈ Elements, ∀i ∈ N, 1 ≤ i ≤ n,

and such that e′k−1, e′k and e′k+1 are instances already present in the namespace e. The
model elements e′k−1, e′k and e′k+1 will automatically be merged in e, by definition of the
union operator ∪, which removes the duplicate elements of the set.

Definition 24 (Local deletion). Let e be a UML model element to delete from the model,
such that e ∈ Elements, and N be the model element in which e is contained, such
that N = (n, S) is the namespace general representation of e, with n a name of e and
S ⊂ Elements, and space(e) = N . A deletion of e from N is defined as S \ {e}.

Note that at the concrete level, following the UML nested representation of namespaces,
it is easy to define the namespace of a model element, and thus a result of the function
space. Indeed, using the composite name n1 :: n2 :: . . . :: nk :: e of a model element e,
with k ∈ N, the namespace of e is nk. The elements e and e′ can also easily be found at
the concrete level since they will be specified in a stereotype of the instance of a model.
More precisely, the element e′ will be found in the values of the tags substitute or add, as
the second element of a pair. The element e will either be the first element of a pair in
the values of the tags substitute, add or delete, or be the element to which the stereotype
is attached. Note however that with certain complex changes, the element concerned
by the change will not be directly expressible in the pair representing the change or be
the element to which the stereotype is attached. In such a case, the abstract syntax
will be used as a language to precisely represent this element. Concretely, modifying
this element will require formal rules that interpret the expression given to identify the
element so that it can be passed to the function. Such a means to interpret the rules is
beyond the scope of this deliverable and concerns tool support. It is thus not considered
here and in particular, we assume that the model element concerned by the change is
given as an argument of the function. The definitions of the application of a substitution,
an addition or a deletion given above are specific to the concerned model elements,
but do not represent a complete change in an instance model. In particular, a change
should also integrate the results of the definitions 22, 23 and 24 to the model, remove
the tagged values associated to that change and update the function that evaluate the
predicate "occurred". To update the tagged values of a change stereotype, such that
the information relative to the change is removed after the change occurs, the following
functions will be necessary.

Definition 25. Let t = (tag, values), with t ∈ TagChange, be a tag of type change such
that the ordered set values ≡ {v1, . . . , vk, . . . , vn}, n ∈ N and ∀k ∈ N, 1 ≤ k ≤ n. The
function f is the function that returns the position of an element of the set values, such
that:

f((v1, . . . , vk, . . . , vn), vk) = k

∀n ∈ N and ∀k ∈ N, 1 ≤ k ≤ n.
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Definition 26. Let t = (tag, values), with t ∈ TagChange, be a tag of type change such
that the ordered set values ≡ {v1, . . . , vk, . . . , vn}, n ∈ N and ∀k ∈ N, 1 ≤ k ≤ n. The
function g is the function that returns the element of a given position in a set values, such
that:

g((v1, . . . , vk, . . . , vn), k) = vk

∀n ∈ N and ∀k ∈ N, 1 ≤ k ≤ n.

We also assume a function that returns the right condition of a change, based on the value
of the tag ref. To update the predicate "occurred", we need to define a function mapping
a boolean value to a value of a tag ref. The set TagRef is the set of the instances of tags
of type ref. When a change occurs, its label is removed from the list of the associated
tag ref, this tag being an instance that belongs to the set TagRef . It is hence possible
to define a function ψ representing the predicate "occurred", which is true if the change
labeled by the tag ref given as argument of the predicate occurred.

Definition 27. The function ψ representing the predicate "occurred" is defined as:

ψ : String→ Boolean

n 7→
{
true if 6 ∃r : r ∈ TagRef , n ∈ υ(r)
false if ∃r : r ∈ TagRef , n ∈ υ(r)

To integrate the result of a substitution, an addition or a deletion to the rest of the model,
the definitions of the application of a change given above can be refined so that the local
change is reflected to the whole model. Intuitively, substituting a model element simply
consists in replacing that model element by another one on the model. This is described
in the definition 22. However, formally, when the model element is substituted by the
other one, the set containing the new element is a new set that needs itself to substitute
the set containing the former model element on the model. A substitution, represented
by the function substitute, can thus be defined recursively.

Definition 28 (Substitution). Let e be a UML model element and e′ the substitutive
model element of e, such that e, e′ ∈ Elements, and let N ∈ Namespaces, such that
N = (n, S), with n a name of e and S ⊂ Elements, be the namespace in which e is con-
tained, or the element e itself in its namespace representation if e is a top namespace,
such that N = space(e). A substitution of e by e′ is defined by a function substitute(e, e′)
such that:

substitute : (Elements×Elements)→ Elements

(e, e′) 7→
{
e′ if N = ns(e)
substitute(e′′, e′′′) if N 6= ns(e)

where e′′ and e′′′ are such that ns(e′′) = N and ns(e′′′) = (n, (S \ {e}) ∪ {e′})).

Note that we can ensure that this recursion is well-founded. Indeed, each recursive call
of the function substitute is made on the "super-namespace" and the definition 3 ensure
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that we will reach the condition N = ns(e). Following the same principle, adding or
deleting a model element requires to substitute the initial set to which the model element
is added or from which it is deleted. The functions add and delete can thus be defined
using the recursive function substitute. Note that this shows that « add » and « delete »
are syntactic sugar of « substitute », as mentioned in Section 2.1.2.

Definition 29 (Addition). Let e be a UML model element and e′ the set of additive model
elements (which may contain only one element if only one element is added) to add in e,
such that e ∈ Elements and e′ ⊂ Elements, and assume ns(e) the namespace general
representation of e, such that ns(e) = (n, S), with n a name of e and S ⊂ Elements. An
addition of e′ in e is defined by a function add(e, e′) such that:

add : (Elements×Elements)→ Elements
(e, e′) 7→ substitute(e, e′′)

where e′′ is such that ns(e′′) = (n, S ∪ e′).

Again, as for the definition 23, the merge behavior is automatically supported by this
definition.

Definition 30 (Deletion). Let e be a UML model element to delete from the model, such
that e ∈ Elements, and let N ∈ Namespaces, such that N = (n, S), with n a name of N
and S ⊂ Elements, be the namespace in which e is contained, or the element e itself in
its namespace representation if e is a top namespace, such that N = space(e). A deletion
of e from N is defined by a function delete(e) such that:

delete : Elements→ Elements

e 7→
{
∅ if N = ns(e)
substitute(e′, e′′) if N 6= ns(e)

where ∅ ∈ Elements is the empty model element and e′ and e′′ are such that ns(e′) = N
and ns(e′′) = (n, S \ {e}).

Thus, to completely apply a change modeled on a model instance, we execute the fol-
lowing. If the change is allowed, i.e. if the corresponding condition is evaluated to true
and the consistency rules, defined in the next section, are fulfilled, we apply one of the
definitions given above, which apply the change and integrate it to the rest of the model.
We then need to update the tagged values to remove the information associated to the
change that occurred. Let s be the stereotype modeling the change and v be the tagged
value labelling the change, such that v ∈ V , with V ≡ υ(ref(s)). The change identified
by v is contained in the tagged values of type change of s, at the same position as v. Let
k be that position, such that k ∈ N, it can be calculated by k = f(V, v). Thus let C be the
set of values of the tag of type change given by change(s), such that C ≡ υ(change(s)),
the change c to apply can be retrieved by c = g(C, k). New tagged values can then be
created for s, such that { ref =V ′ } and { change =C ′ }, where V ′ ≡ V \ {v}, C ′ ≡ C \ {c}
and the tag change can be a tag change, substitute, add or delete. These two tagged
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values can replace the former one using the function substitute defined above. Finally,
the function ψ is updated such that ψ(v) = true. This is done automatically since v is
removed from the instance values. Note that an element p of one of the list of the tags
ref used as predicate in a condition of a stereotype of type change can be omitted on the
diagram if ψ(p) = true.

Note that we do not describe the case of the composite changes and the extensions
« substitute-all », « add-all » and « delete-all », since those type of evolutions will use the
same concepts as the ones described above, but applied as many times as necessary
to execute all the changes. For the extensions « substitute-all », « add-all » and « delete-
all », the pair representing the change will be of the form (e, e′) where e is not a model
element, but a set of model element, such that e = {e1, . . . , en} with n ∈ N. Applying
substitute-all(e, e′) is thus equivalent to applying
substitute(e1, e

′), . . . , substitute(en, e
′). The extensions « add-all » and « delete-all » will

follow the same principle.

UMLseCh models possible evolutions and thus, a same model element could be con-
cerned by more than one change. If a change happens on a model element that was
concerned by more than one possible evolution, the other possible changes concerning
the same model element should be adapted. One possibility could be to remove those
changes, hence to remove all the pair having as first element the element that was mod-
ified. Another possibility would be to consider that this new element can still evolve. In
this case, the first element of all the pairs that were modeling a change concerning the
modified model element has to be replaced by the new model element resulting from the
change. This second solution allows the evolutions to evolve themselves with time. Note
also that given how we modeled the changes, a roll-back function can be defined easily.

2.5 UMLseCh Formal Semantics

In this section, we describe the UMLseCh abstract syntax, which is an extension of the
UMLsec abstract syntax that includes the UMLseCh stereotypes, as well as the results
obtained from applying a change on the several diagrams and the rules that should define
whether a change preserves the consistency of the diagrams. Note that the abstract
syntax of UMLseCh differs lightly from the UMLsec abstract syntax, but remains similar
to it. In particular, some of the concepts defined for the behavioral semantics and the
execution of the UML diagrams are ignored here since they are not necessary in the
context of a change. However, the UMLseCh diagrams are still executable provided that
the representations described above are adapted to the UMLsec behavioural semantics
concepts and used in the context of the UML Machines. For example, an operation of
a Class is simply considered as an operation in the following. However, it is easy to
consider it as a message, as it is the case in the UMLsec abstract syntax, since they
use the same representation, i.e a 3-tuple O = (oname, args, otype). Other elements will
also be extended, but none of these extensions will affect the execution of the diagrams.
UMLseCh models can thus be used with the behavioral semantics and UML Machine
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rules, defined in [19], and be executed.

The concept of stereotypes is also used differently in the UMLseCh abstract syntax.
More concretely, the stereotypes attached to model elements in the UMLsec abstract
syntax are elements of the set of stereotypes name, defined as StereoNm in Section
2.2. For UMLseCh, the stereotypes will be stereotypes instances that belong to the
set Stereotypes15. Again, this will not be a problem regarding the execution of the
UMLseCh diagrams since stereotype instances can easily be considered as stereotype
names provided that the tagged values associated to a stereotype at the concrete level
of the instance of a model are ignored. In particular, each instance of a UML element has
only one instance of a given stereotype name. Again, in the following, by "stereotype",
we will always mean "stereotype instance" and the use of stereotype definitions will be
mentioned explicitly.

Note that the abstract syntax described in the following defines the representation of the
UML elements and diagrams using n-tuples and sets. Therefore, all the changes will be
executed by modifying those sets and n-tuples directly. Generally, a set A will be modified
by (A\{e})∪{e′}, A∪{e′} or A\{e′}, with e, e′ ∈ Elements, for a substitution, an addition
or a deletion respectively. Formally, once the set is modified, it can be integrated to the
rest of the model with the concepts described in the previous section. The modification
of the element of a tuple can be expressed easily as well. We will thus not describe all of
the changes explicitly and formally, these applications being trivial. Instead, we describe
informally the elements concerned by changes and the changes that could require extra
changes. The formal rules ensuring the consistency are also given.

2.5.1 General principles

Some concepts and consistency rules are applicable to each type of diagram defined be-
low and thus are presented here in a general context. At first, note that UMLseCh inherits
all of the representation and consistency rules from UMLsec. Therefore, any change
applied on an UMLseCh model should preserve those rules and definitions so that the
resulting model is an UMLsec (and thus UMLseCh) compliant model. In other words,
the principles and consistency rules described in the next sections are not exclusive, but
added to the existing UMLsec rules and conditions. To allow the application of a modeled
evolution, all of the conditions must be fulfilled.

All of the elements used in UMLseCh diagrams are UML named elements, which are de-
fined as elements with an optional attribute name of type String. The name of an element
hence cannot be modified, since it is not a NamedElement and thus cannot be used as a
tagged value of a stereotype « substitute », « add », « delete » and their extensions. This
limitation however does not affect the efficiency of the UMLseCh notation since chang-
ing the name of an element does not represent an important and likely modification of a
model.

The diagrams and model elements use sets in their representation. The sets cannot
contain duplicate elements and thus, it is not allowed to add an element that already exists

15Note that the set StereoNm is called Stereotypes in [19], but is not to be confounded with the set
Stereotypes defined here!
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or to substitute an element by an element that already exists. Substituting an element by
another element that is already contained in the set would indeed be equivalent to a
deletion of the model element initially concerned by the substitution. Applying an addition
of a model element that is already in the set would simply leave the model unchanged.
Again, adding an element that already exists or substituting an element by an existing
one represent undesirable types of evolutions and thus this limitation does not affect the
efficiency of the UMLseCh notation. Similarly, if an element has another element in its
representation that is a simple element and not a set, it is not allowed to add such an
element if the concerned model element already has one. For example, it is not allowed
to add a guard on a transition if this transition already has a guard.

Finally, a model element can only have one occurrence of a stereotype definition and this
stereotype must have the model element to which it is attached as base class. Thus,
when substituting a stereotype s by a stereotype s′, or when adding a stereotype s′, on a
model element E, such that s, s′ ∈ Stereotypes, E ∈ Elements and stereo(E) is the set
of stereotypes of E, we verify:

6 ∃st : st ∈ Stereotypes, τ(st) = τ(s′),

where τ is the function defined in definition 5. The second condition cannot be formally
verified since base classes are not defined in our abstract syntax. One should thus always
ensure that the modification respects the base class definition of the stereotype placed
on the model by the application of the modeled evolution.

2.5.2 Object Diagrams

2.5.2.1 Abstract Syntax of Object Diagrams

For an object, the difference from the UMLsec abstract syntax is that the set stereo of
stereotypes name is now a subset of stereotype instances, simply called "stereotypes",
as mentioned above. We can thus represent an object as a 6-tuple
O = (oname, cname, stereo, aspec, ospec, int) where oname, cname, aspec, ospec and
int represent the same elements as for UMLsec and stereo ⊆ Stereotypes is a set
of stereotypes (as opposed to UMLsec where they were stereotype definitions). An in-
terface can also evolve and thus integrate UMLseCh stereotypes. It is hence of the form
I = (iname, ospec, stereo) where iname ∈ String is the interface name, ospec a set of
operation specifications and stereo ⊆ Stereotypes a set of stereotypes.

Dependencies are also adapted to be able to evolve and thus have a set of stereotype that
could potentially contain stereotypes of type change. However, a stereotype definition
stereo ∈ {« call »,« send »} is defined as in the case of UMLsec. This allows us to verify
certain constraint concerning call and send operations defined in the UMLsec formal
semantics. Refer to [19] for more details about these constraints. A dependency can
thus be defined as a tuple d = (dname, dep, indep, int, stereo, stereoch) where stereoch ⊆
Change is a set of stereotypes of type change. The other elements of d have the same
meaning as for UMLsec.

An object diagram is thus a pair O = (Objects(D),Dep(D)) given by a set Objects(D) of
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objects and a set Dep(D) of dependencies. The same conditions as for UMLsec hold
here.

2.5.2.2 Application of a Change

For object diagrams, the following model elements are concerned by changes: objects,
stereotypes, attributes, operations, dependencies and interfaces. An operation can be
substituted by another, added on an object or deleted from an object. However, elements
from an operation, namely, the name, the return type and the set of arguments, cannot be
changed. This choice is motivated by the fact that such changes concerns small part of
the model elements and stereotypes cannot be directly attached to operations. Therefore,
modifying those elements directly would require the stereotype attached to the object
and modeling the change to precisely target the element to modify. This would request
more complex expressions since different operations may have the same representation
for those elements. For example, many operations could have Integer as return type.
The stereotype would thus need to express precisely which return type Integer has to
be modified. Such elements hence cannot be changed directly and the change of the
complete operation will be used instead. This means of modeling does not require extra
efforts and avoid the obligation to use complex expression to represent the element to
modify.

An object can be substituted by another, added on the diagram or deleted from the dia-
gram. In addition, the elements of the object can be modified. Concretely, stereotypes,
operations, attributes and interfaces can be substituted, added or deleted. Note that, for
the same reasons as the operations, the type of an attribute cannot be modified. The set
of operations of an interface can be modified as well. A dependency can be substituted
by another, added on the diagram or delete from the diagram. Any of the elements of
a dependency can be modified as well. Note that dependencies are dependent to ob-
jects and thus, if an object that is a target or a source of a dependency is substituted by
another, the dependency must be adapted. This adaptation means to also replace the
source or target object by the new one in the dependency.

2.5.2.3 Preservation of the Consistency

When modifying an Object diagram, several consistency rules should be preserved after
the modification. In the following, we present conditions that must be fulfilled to allow a
change so that it preserves the consistency of the diagram.

Since the name of the objects must be mutually distinct, the following constraint must be
verified to allow a substitution of an object e by an object e′ in a diagram D, with onamee′
the name of e′:

6 ∃o : o ∈ (Objects(D) \ {e}) : onameo = onamee′

and to allow an addition of an object e′ in D:

6 ∃o : o ∈ Objects(D) : onameo = onamee′
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where onameo is the name of o. For obvious reasons, it is not necessary when deleting
an object. However, an object o, with onameo the name of o, cannot be deleted if it is the
source or the target of a dependency. Precisely, we verify:

6 ∃d : d ∈ Dep(D) : onameo = depd ∨ onameo = indepd

where d = (dnamed, depd, indepd, intd, stereod, stereochd).
A substitution of a dependency d by a dependency d′ or an addition of a dependency d′

is possible only if d′ connects two existing objects o and o′, with onameo and onameo′ the
names of o and o′ respectively. Formally, before applying the change, we verify:

∃o, o′ : o, o′ ∈ Object(D), (depd′ = onameo) ∧ (indepd′ = onameo′)

where d′ = (dnamed′ , depd′ , indepd′ , intd′ , stereod′ , stereochd′) is the substitutive or ad-
ditive dependency. Adding or modifying an operation to an interface requires that this
operation also exists in the object o to which the interface belongs. Formally, before each
change on the set of operation of an interface int, we check:

ospecint ⊆ ospeco

where ospecint and ospeco are the sets of operations of int and o respectively. In addition,
it is not allowed to modify or delete an operation op of an object o if this operation is also
defined in an interface i of the set int of interfaces of o. Formally, we have:

∀i : i ∈ int :6 ∃op′ : op′ ∈ ospeci : op′ = op.

where i = (inamei, ospeci, stereoi), ∀i ∈ int.

2.5.3 Class Diagrams

2.5.3.1 Abstract Syntax of Class Diagrams

Again, Class diagrams are very similar to Object diagrams. A class is defined as an
object C = (oname, cname, stereo, aspec, ospec, int) where oname is the empty string.

A class diagram is defined as a pair D = (Classes(D),Dep(D)) given by a set
Classes(D) of classes and a set Dep(D) of dependencies. Again, we require that the
names of the classes are mutually distinct.

2.5.3.2 Application of a Change

The application of a change in a Class diagram will follow the exact same principles as
the ones defined above for Objects diagrams.

2.5.3.3 Preservation of the Consistency

The rules defined for the Objects diagrams also apply here. In addition, the names of the
different classes must be mutually distinct. Therefore, to allow a substitution of a class
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c by a class c′ in a diagram D, with onamec′ the name of c′, we verify if the following
condition is fulfilled:

6 ∃cl : cl ∈ (Class(D) \ {c}) : onamecl = onamec′

and for an addition of a class c′ in D:

6 ∃cl : cl ∈ Class(D) : onamecl = onamec′

where onamecl is the name of the class cl.

2.5.4 Statechart Diagrams

2.5.4.1 Abstract Syntax of Statechart diagrams

For statechart diagrams, the only difference with UMLsec abstract syntax is that several
elements have a set of stereotypes that can include stereotypes of type change. A state
S includes this set of stereotypes and is given by
s = (name(S), entry(S), state(S), internal(S), exit(S), stereo), where
stereo ⊆ Stereotypes is a set of stereotypes. name(S), entry(S), state(S), internal(S) and
exit(S) have the same meaning as in UMLsec.

A transition is defined as t = (source(t), trigger(t), guard(t), effect(t) , target(t), stereo)
where stereo ⊆ Stereotypes is a set of stereotypes and the other elements of t are
the same as in UMLsec.

Statemachines differ from other type of diagrams (such as class or deployment diagrams)
by being themselves namespaces or model element that are contained in namespaces.
They can also appear more than once in a subsystem. In consequence, the statema-
chines can have their own set of stereotypes. We thus define a statechart diagram as
D = (ObjectD,StatesD,TopD , TransitionsD, stereo), given by an object name ObjectD pro-
viding the context of the statemachine by associating it to another element of the model, a
set of states StateD, a top state TopD, containing all the states of D as substates, possibly
in a nested way, a set TransitionsD of transitions, and a set of stereotypes stereo.

2.5.4.2 Application of a Change

For statechart diagrams, the elements that can be modified, added or deleted are states,
transitions and properties of states and transitions. All the types of elements of statechart
diagrams are thus concerned by evolutions.

Transitions between states are also dependent on the potential modification of the source
or the target state. In particular, if a state is substituted by another state, the transitions
having that state as a source or target should be adapted.
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2.5.4.3 Preservation of the Consistency

On statemachines, the specific elements concerned by changes that could affect the
consistency are states and transitions. When a transition t is substituted by t′ or when
a transition t′ is added, for a statemachine D, the following condition must be fulfilled to
ensure that the new transition has correct source and target states:

∃s1, s2 : s1, s2 ∈ StateD, (source(t′) = s1) ∧ (target(t′) = s2)

In addition, we must ensure that if a transition t is substituted by t′, such that
source(t) 6= source(t′) or target(t) 6= target(t′), the connected states will still have at least
one incoming transition and one outgoing transition after the change occurerd. Thus to
allow the substitution, we verify the following condition:

∃t1, t2, t3, t4 : t1, t2, t3, t4 ∈ (TransitionD \ {t}) ∪ {t′},

((source(t1) = source(t)) ∧
(target(t2) = source(t)) ∧
(source(t3) = target(t)) ∧
(target(t4) = target(t)))

Note that the above condition has to be refined if source(t) is an initial state or if target(t)
is a final state, since an initial state has no incoming transition and a final state has
no outgoing transition. This can easily be done by removing the condition target(t2) =
source(t) or the condition source(t3) = target(t) from the above condition, or both in the
unlikely case that the transition connects the initial state directly to the final state.

Deleting a transition from a statemachine D is allowed only if the source and target states
of that transition have other incoming and outgoing transitions, so that they are not iso-
lated by themselves on the diagram. Assume the transition t to delete and source(t) = s1

and target(t) = s2, with s1, s2 ∈ StateD, the following condition thus has to be verified:

(∃t1, t2 : t1, t2 ∈ (TransitionD \ {t}) : (source(t1) = s1 ∧ target(t2) = s1))∧
(∃t3, t4 : t3, t4 ∈ (TransitionD \ {t}) : (source(t3) = s2 ∧ target(t4) = s2))

Initial and final states are not concerned by this situation.

To be consistent, a statemachine must have at most one initial state per "level". By level,
we mean a set of state without the substates or the super-states. To verify this constraint,
the following must be fulfilled:

∀S : S ∈ StateD, 6 ∃s1, s2 : s1, s2 ∈ states(S), (s1 6= s2) ∧ (s1, s2 ∈ InitialD)

Note that this condition also verifies the first level of the statemachine, since this level is
represented by state(Top)D and TopD ∈ StateD. In addition, an initial state cannot have
incoming transitions and a final state cannot have outgoing transitions, which is verified by
the constraints source(t) /∈ FinalD∪TopD and target(t) /∈ InitialD∪TopD respectively. Note
that a statemachine can have more than one final state. Adding or deleting a state directly
is impossible without affecting the consistency of the statemachine. Such a change will
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require workarounds as presented in Section 2.1.5.

2.5.5 Sequence Diagrams

2.5.5.1 Abstract Syntax of Sequence diagrams

A lifeline of a sequence diagram is extended from UMLsec abstract syntax by adding a
set of stereotypes. A lifeline is thus defined as a 3-tuple (O,C, stereo), given by:

• an object O of class C; and

• a set stereo ⊆ Stereotypes of stereotypes

The set of lifelines of a sequence diagram D is called Obj(D). Connections are extended
in the same way with a set of stereotypes. A connection is thus defined as a 5-tuple
l = (source(l), guard(l),msg(l), target(l), stereo) where stereo ⊆ Stereotypes is a set of
stereotypes and source(l), guard(l), msg(l) and target(l) have the same meaning as in
UMLsec.

As for statemachines, a subsystem can have more than one sequence diagram. They are
represented by the construct Interaction in UML [44] and therefore represent namespace
as well. We thus add a set of stereotypes to sequence diagrams so that they can be
concerned by their own evolution. A sequence diagram then simply defined as a pair
D = (Obj(D),Cncts(D)).

2.5.5.2 Application of a Change

The elements concerned by a change in a sequence diagram are lifelines, connections
and messages. By connection, we mean the arrow drawn between lifelines on the dia-
gram, which is the source and target of the connection described in the abstract syntax of
sequence diagrams presented here. By message, we mean the message on the arrow,
which is the message contained in the connection. A message can be substituted, but
cannot be added or deleted directly. To add (resp. delete) a message, it is necessary to
add (resp. delete) a connection. When a lifeline is substituted by another lifeline, we as-
sume that all the connections are adapted. The adaptation means that if any connection
has the substituted lifeline as a source or target, this source or target in the connection is
replaced by the new lifeline.

2.5.5.3 Preservation of the Consistency

To substitute a connection c by a connection c′, or add a connection c′ on a sequence
diagram D, at least one of the two objects, one representing the source object and one
target object, must be an object of the sequence diagram. Before applying the substitution
or the addition, we thus verify the following rule:

∃o, o′ : o, o′ ∈ Obj(D), (source(c′) = o) ∨ (target(c′) = o′)
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To substitute a lifeline l by a lifeline l′, or add a lifeline l′ on a sequence diagram D, such
that l′ = (O,C, s) we must ensure that there is not another lifeline with the same object
and class and that the object exists. The first constraint can be expressed easily by:

6 ∃ls : ls ∈ Obj(D), ls = (O′, C ′, s′), O = O′ ∧ C = C ′.

For the second rule, assume an object diagram OD, we verify the following constraint:

∃ob : ob ∈ Objects(OD), ob = O.

Finally, deleting a lifeline is not allowed if connections have this lifeline as source or tar-
get object. Formally, assume the lifeline l to delete from the diagram D, the following
constraint must be fulfilled to allow the change:

6 ∃c : c ∈ Cncts(D), (source(c) = l) ∨ (target(c) = l).

2.5.6 Activity Diagrams

2.5.6.1 Abstract Syntax of Activity diagrams

As for UMLsec, activity diagrams are presented as a special type of statechart diagrams.
In particular, any construct of our simplified version of activity diagrams can be expressed
using the concepts of statechart diagrams. However, as opposed to statemachines, only
one activity diagram is defined per subsystem. Thus an activity diagram is a 3-tuple
D = (StatesD,TopD,TransitionsD) given by a finite set of states StatesD, the top state
TopD ∈ StatesD, and a set TransitionsD. Again, the set StatesD is disjointly partitioned
into the sets InitialD, FinalD, SimpleD, ConcD, SequD. A state is extended in UMLseCh by
adding a set of stereotypes to it. We have S ∈ StateD where stereo ⊆ Stereotypes is a
set of stereotypes and name(S), entry(S), state(S), internal(S), exit(S) and swim(S) have
the same meaning as in UMLsec.

The transitions are also extended by adding a set of stereotypes to it. A transition t ∈
TransitionsD is given by:

• the source state source(t) ∈ StatesD of t;

• the guard guard(t) of t;

• the target state target(t) ∈ StatesD of t; and

• a set stereo ⊆ Stereotypes of stereotypes.

2.5.6.2 Application of a Change

The constructs of activity diagrams are the same as the ones of statechart diagrams, with
an additional concept of swim lane. Changes of swim lanes cannot be modeled by the
UMLseCh stereotypes and therefore are not concerned here. If a state is substituted by
another state, we assume that the substitutive state has the appropriate swimlane.
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2.5.6.3 Preservation of the Consistency

The rules are the same as for statechart diagrams. For an addition of a state, however,
we ensure that the swimlane specified in the additive state refers to an existing object.
Formally, for an activity diagram AD, an object diagram OD and an additive state S, such
that swim(S) = o, we verify:

∃o′ : o′ ∈ Obj(OD), o = o′.

2.5.7 Deployment Diagrams

2.5.7.1 Abstract Syntax of Deployment diagrams

For deployment diagrams, we extend the nodes and the components so that they include
a set of stereotypes. Formally, a component is a 4-tuple
C = (name, int, cont, stereo) where name is the component name, int is a set of in-
terfaces that can possibly be empty, cont is the set of subsystem instances and object
names contained in the component, and stereo ⊆ Stereotypes is a set of stereotypes.
A node is a 3-tuple N = (loc, comp, stereo) where stereo ⊆ Stereotypes is a set of
stereotypes and loc and comp have the same meaning as in UMLsec.

We extend links so that they include a set of stereotypes. A link l is of the form l =
(nds(l), ster(l)) where nds(l) ⊆ Nodes(D) is a set of arity two containing the nodes being
linked and ster(l) ⊆ Stereotypes is a set of stereotypes. A dependency is also ex-
tended in the same way. Formally it is a 4-tuple d = (clt, spl, int, stereo) where stereo ⊆
Stereotypes is a set of stereotypes and clt, spl and int have the same meaning as in
UMLsec.

As for UMLsec, for every dependency D = (C, S, I, sd) there is exactly one link LD =
(N, sl) such that N = {C, S}. A deployment diagram is given by
D = (Nodes(D), Links(D),Dep(D)) where Nodes(D) is a set of nodes, Links(D), is a set
of links and Dep(D) is a set of dependencies.

2.5.7.2 Application of a Change

The elements that can evolve on a deployment diagram are the nodes, the components,
the links and the dependencies. When a node is substituted by another one, we assume
that the possible links connecting that node to another node are adapted. The same
application is assumed for dependencies when substituting a component by another one.

2.5.7.3 Preservation of the Consistency

The substitution of a link e by a link e′, or the addition of a link e′, on a deployment diagram
D requires the source and target of e′ to exist on D. This requirement can be verified by
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the following constraint:

∃n, n′ : n, n′ ∈ Nodes(D), (source(e′) = n) ∧ (target(e′) = n′),

Similarly, to substitute a dependency d by a dependency d′ or to add a dependency d′ on
a deployment diagram D, we verify:

∃n, n′ : n, n′ ∈ Nodes(D),∃c : c ∈ compn, ∃c′ : c′ ∈ compn′ , (ctld′ = c) ∧ (spld′ = c′).

where n = (locn, compn, stereon), n′ = (locn′ , compn′ , stereon′)
and d′ = (cltd′ , spld′ , intd′ , stereod′).

Finally, a node cannot be deleted if a link connects it to another node. In the same way,
a component cannot be deleted if a dependency connects it to another component. For-
mally, before deleting a node n or a component c from a diagram D, we verify:

6 ∃l : l ∈ Links(D), n ∈ nds(l),

6 ∃d ∈ Dep(D), d = (cltd, spld, intd, stereod), (cltd = c) ∨ (spld = c).

2.5.8 Subsystem

2.5.8.1 Abstract Syntax of Subsystem

As for UMLsec, by subsystem, we always mean subsystem instance. We extend the rep-
resentation of a subsystem by adding a set of stereotypes and a set of namespaces to it.
Recall that the namespaces are given in their general representation and only provide a
means of storing complex substitutive or additive elements. The existing elements of the
subsystem, although they are themselves namespaces, are thus not concerned by that
set. We define a subsystem as a tuple
S = (name(S),Op(S), Ints(S), Ssd(S),Dd(S),Ad(S) , Sc(S), Sd(S),Nms(S), stereo) is given
by:

• the name name(S) of the subsystem;

• a set Op(S) of names of offered operations and accepted signals, this set can be
empty;

• a set Ints(S) of subsystem interfaces, this set can be empty;

• a static structure diagram Ssd(S);

• a deployment diagram Dd(S);

• an activity diagram Ad(S);

• for each of the activities in Ad(S), a corresponding specification of the behavior
of objects appearing in Ssd(S) given by a set Sc(S) of statechart diagrams, a set
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of sequence diagrams Sd(S), and the subsystems in Ssd(S). Each diagram D ∈
Sc(S) ∪ Sd(S) has an associated name context(D). In the concrete syntax, it is
written next to it;

• A set Nms(S) of namespaces containing substitutive or additive model elements;
and

• stereo of stereotypes.

The subsystems follow the same criteria and conditions as the ones presented in UMLsec.
In addition, we define the following condition to ensure that for each complex change
modeled on the instance of a model, there exists a namespace containing the substitu-
tive or additive complex element. Assume the set TagChangeS of instances of tag of
type change on the subsystem S, we have:

∀t ∈ TagChangeS ,∀e ∈ υ(t), ∃ns = (n, elst), ns ∈ Nms(S), n = e

2.5.8.2 Application of a Change

In UML, diagrams provide a means to graphically represent systems by grouping together
graphical representations of elements of same type and context. However, diagrams in
UML are not model elements and therefore do not have a name and associated stereo-
types. This means that elements of a diagram are directly contained in packages. In our
case, the model elements of the diagrams defined above are directly contained in the
subsystem containing the diagrams. Thus if one wants to model general evolution on a
diagram, such as the addition of a class, the substitution of all the links of a deployment
diagram or the addition of a statemachine, the corresponding stereotypes will be attached
to the subsystem. The statechart diagrams and sequence diagrams are nevertheless dif-
ferent since they are considered as model elements, under the construct Statemachine
and Interaction respectively. To apply a modification to those diagrams, such as adding
an element to it, the corresponding UMLseCh stereotypes can be directly attached to
them.

All elements from a subsystem can theoretically be modified by a UMLseCh stereotype
attached to that subsystem, provided that the element is precisely identified. However,
certain of these modifications can also be modeled by attaching a UMLseCh stereotype
to a sub-element containing the evolutive element. This latter solution should be used
whenever it’s possible since it is more direct and it increases the readability. The fol-
lowing evolution can, on the other hand, be modeled only by a stereotype attached to
a subsystem itself: the addition of elements contained in the diagrams defined above;
the addition of a statemachine or a sequence diagram and the substitution; addition or
deletion of a subsystem operation; signal or interface. Recall that these modifications can
only be modeled by attaching UMLseCh stereotypes to the subsystem, but other modifi-
cations, such as modifying an operation of a class, can also be modeled in such a way by
giving an expression that precisely identifies the sub-element to modify. These evolutions
can thus either be modeled by attaching the UMLseCh stereotypes to the subsystem or
to the sub-namespace containing the evolutive element. Again the first solution should
be used whenever possible.
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2.5.8.3 Preservation of the Consistency

All the rules concerning modifications of elements that belong to diagrams described
above were defined in the preservation of the consistency of those diagrams. We can
however add some rules related to evolutions that could possibly affect the consistency
of subsystems. These rules involve statemachines and sequence diagrams, as well as
the operations, signals and interfaces of the subsystems.

Since each activity of an activity diagram has one, and only one, associated behavior, be-
ing in the form of a statemachine or a sequence diagram, the substitution of this behavior
should be substituted by another behavior associated to the same activity. Therefore,
before substituting a statemachine or a sequence diagram s of a subsystem S, such that
s ∈ Sc(S) ∪ Sd(S), by a statemachine or a sequence diagram s′, we verify:

context(s′) = context(s)

Provided that the subsystem is in a consistent state before the modification, and in par-
ticular that it has a behavior defined for each activity, this condition is sufficient to ensure
the consistency of the subsytem after the evolution. If we consider that an activity can
temporarily have no behaviour and that the evolution consists in adding that behavior, the
following constraint is defined to ensure that an activity has only one associated behav-
ior. Before adding a statemachine sm or a sequence diagram sd on a subsystem S, with
Sc(S) the set of statechart diagrams of S and Sd(S) the set of sequence diagrams of S,
we verify:

6 ∃e : e ∈ Sc(S), contex(e) = contex(sm′)

and
6 ∃s : s ∈ Sd(S), contex(s) = contex(sd′).

If an operation or a signal os of a subsystem S, such that os ∈ Op(S), is substituted by
an operation or signal os′, or if an operation or signal os′ is added on a subsystem S,
we ensure that this operation or signal is defined in the static structure diagram of the
subsystem. More precisely, if the static structure diagram is an object diagram OD, such
that Ssd(S) = OD, we verify:

∃ob : ob ∈ Objects(OD),∃i : i ∈ intob, os′ ∈ ospeci.

where ob is of the form (onameob, cnameob, stereoob, aspecob, ospecob, intob) and i is of the
form (inamei, ospeci, stereoi). If the static structure diagram is a subsystem S ′ such that
Ssd(S) = S ′, we verify:

os′ ∈ Op(S ′).

Finally, we describe informally some additional rules regarding the statemachines, the
sequence diagrams and the deployment diagrams. A component C of a deployment di-
agram has a set contC of objects and subsystem instances. Therefore, we must ensure
that those objects and subsystem instances are defined within the subsystem S, more
precisely in the static structure diagram Ssd(S). Statechart diagrams and sequence dia-
grams use operations for triggering events and in messages respectively. Again, those
operations must be defined within the subsystem S and in particular in the static structure
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diagram Ssd(S).

2.5.9 Consistency of a Composite Change

Verifying the consistency of a diagram in the case of a composite change is slightly dif-
ferent. Indeed, a composite change can be compared to a transaction in a data base
[13]. In particular, a composite change must fulfill the constraint of atomicity: the change
is applied completely, or not at all. Therefore, the consistency is verified when all the
sub-changes are applied on the model and not only one of them. The consistency rules
defined above thus cannot simply be reused independently with each sub-change, since
the consistency concerns the composite change as a whole. Note that the constraint of
isolation and durability are implicitly verified here. No other change can take place while
the composite change is applied and the modifications remain on the model. For the sub-
changes occurring in parallel, we do not ensure isolation. This means that a user should
avoid to model several sub-changes on the same model element if those sub-changes
belong to the same composite change.

Two approaches can be considered in the context of a composite change. The first solu-
tion would be to apply the change and verify the consistency of the diagrams afterwards.
The modification is then conceived and the change validated if the consistency is pre-
served, otherwise the model is rolled-back to the initial version. This solution however
requires to apply the changes first and then roll-back if the consistency is not preserved.
We will thus consider another approach following the same principle as the conditions de-
fined above, i.e. to define conditions that will be verified before allowing the change. This
approach consists in the following: the condition of each sub-change is verified assuming
that the other changes were applied. Note that the changes did not really occur, but the
sets concerned by the modifications were adapted to verify the condition. Note also that
certain changes will be allowed in the case of a composite change although they were not
permitted with the conditions described above. This is for example the case of a deletion
of a state in a statemachine, which is forbidden in the case of a normal change because
transitions are connected to that state. With a composite change, it can be allowed if
other parallel changes consist in deleting the connected transitions in a way that leaves
the resulting diagram consistent.

To illustrate the approach described above, we can consider the example shown in Figure
2.15. Deleting the final state would be forbidden for a single change, as defined in the
consistency rules of Section 2.5.4. Deleting the transition between the state A and the
final state is also forbidden by a condition of Section 2.5.4. However, assuming that a
state can be deleted provided that no transitions are connected to it, as mentioned in the
previous paragraph, the deletion of the final state can be allowed if the parallel change
that consists in deleting the connected transition is applied. This can be formalized by
assuming that the parallel change delete-transition happened and thus by adapting the
set, such that the condition is defined as follows:

6 ∃t : t ∈ (TransitionsD \ tf ), (source(t) = f) ∨ (target(t) = f)

where f is the deleted final state and tf the transition from the the state A to f . We
can see that adapting the set with TransitionsD \ tf consists in assuming that the parallel
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Figure 2.15: Example of an allowed composite change

change which removes tf was applied. The condition for deleting the transition between
A and the final state can be adapted in a similar way. Any condition from the previous sec-
tions defining the consistency rules can thus be adapted by simulating the other parallel
sub-changes on the concern sets.

Note that simulating the change concretely, in a tool, could require as much resources as
applying the change completely. An idea could be to specify a scope for a sub-change,
which would define which parallel changes could affect the condition and thus have to be
considered. This question however is left as future work. Verifying the consistency of an
addition using the merge behavior defined in Section 2.1.4 will follow the same principle
as the composite changes.

2.6 Related Work

Applying evolution and changes on models evidently requires to execute model transfor-
mations. In the following we give an overview of related work on Model transformation
and Software evolution in general. To the extent of our knowledge, there is however so
far no published work that considers evolution in the context of a model-based develop-
ment approach for security-critical software involving more than one evolution path and
automated model verification, which is the scope of this Deliverable as we will see in the
following chapters.

2.6.1 Model Transformation

Generally, transforming a model consists in taking a source model Ma conforming to a
metamodel Mma and to produce a target model Mb conforming to a metamodel Mmb.
There exist two types of model transformations: horizontal and vertical. If the level of
abstraction of the target model is different from the one of the source model, the transfor-
mation is called vertical, otherwise, the transformation is called horizontal.
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Figure 2.16: Context of ATL Transformation as shown in [17]

As mentioned in [53], the evolution of a model is often supported by model transforma-
tion rules written in specific languages. The OMG [14] defined a standard for expressing
model transformations, called QVT (Query/View/Transformation) [43]. As mentioned in
[17], the growing importance of model transformations led the OMG to publish a QVT
request for proposal (RFP) [42]. Several propositions answered that RFP, which then
evolved toward a single proposal [42]. Others however continued to develop indepen-
dently, as for example the ATLAS Transformation Language (ATL) [30]. ATL is a model
transformation language that provides a powerful abstract syntax as well as a concrete
syntax. It offers the possibility to express model transformations rules for horizontal and
vertical transformations from any source metamodel to any target metamodel. Since it
was initially developed to answer the QVT RFC issued by the OMG, it shares common
requirements with QVT [17]. The concept of model transformation with ATL is shown in
Figure 2.16. The idea of software evolution can thus be formulated with ATL. For example,
to add an operation to a UML Class, we can define a rule such as the one of Figure 2.17,
where ’newOp()’ is simply an abstract representation of the added operation to facilitate
the example.

Tefkat [31] is another example model of a transformation language, which in this case is
based on F-Logic [28]. An example of a Tefkat rule, taken from [31] where the complete
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module example;

create OUT : UML from IN : UML;

rule addOp {

from a:UML!Class

to b:UML!Class (

name <- a.name,
ownedAttribute <- a.ownedAttribute,
ownedOperation <- a.ownedOperation

->union(a.ownedAttribute->'newOp()')

)

}

Figure 2.17: Simple example of a rule adding an operation in a UML class

CLASS ClsToTbl {

Class class;

Table table;

};

RULE ClassAndTable(C,T)
FORALL Class C {

is_persistent: true;

name: N;

}

MAKE Table T {

name: N;

}

LINKING ClsToTbl WITH class = C,
table = T;

Figure 2.18: Example of a transformation using Tefkat

transformation can be found, is shown in Figure 2.18.

For Tefkat as for ATL, they both represent the evolutions with rules using text-based no-
tation. Therefore, they are not adapted to easily represent the model transformations on
the diagrams of the high-level models. A graphical representation of the model transfor-
mation however would increase the readability. This issue is addressed by UMLX and
Mola.

UMLX [55] is a graphical model transformation language that was also developed to an-
swer the QVP RFP [42] issued by the OMG. It is based on the class diagram of UML. More
precisely, it extends the class diagram to include notations that support inter-schema
transformation. The syntax of the language is shown in Figure 2.19. It is thus possible
to graphically represent the evolution of models using this language. Other constructs,
such as constraints or multiplicity, can also be used in order to refine the transformation.
UMLX hence provides a means to define a similar approach as the one presented in
this document. However, several differences exist. UMLX provides an extended nota-
tion by adding new constructs and therefore extends the UML metamodel. A discussion
about the consequences of extending the UML metamodel is given in Section 2.3. No
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Figure 2.19: UMLX Transformation Syntax [55]

transformation operator exists in UMLX for an addition and thus, adding an element is
not explicitly modeled. Instead, transformation shows the result with the new element
added on the model. Finally, a main difference with the work described in this deliver-
able is that UMLX offers a graphical notation for model transformations based on the
UML class diagram. This means that the representation will remain separated from the
evolving models. For example, if the diagram being transformed is a state diagram or a
deployment diagram, the transformation will be represented by an extended UMLX class
diagram, but the notation will not be applied directly on the statemachine or deployment
diagram. However, as opposed to the notation defined in this document, UMLX is a
graphical representation of QVT transformation and thus allows a larger set of possibility,
such as vertical transformations or transformations where the target model conforms to a
different metamodel than the source model. An example of such transformations can be
found in [54], where UMLX is used to model transformations from UML class diagrams to
relational data bases (RDBMS).

MOLA (MOdeling transformation LAnguage) [27] is another graphical language for model
transformations. It expresses the transformations with special constructs that are similar
to structured flowcharts using the concept of pattern matching. A transformation is then
represented as a MOLA program, which is a sequence of graphical statements linked
by dashed arrows. It also introduces the concept of foreach loop, the most used kind
of statement, which is graphically represented by a rectangle with a bold frame. Figure
2.20 shows an example of a MOLA program, described in [27], which builds a new W for
each B that is linked to A, links this new W to the corresponding A with the association
roleW and assign the concatenation of the parameters of the corresponding A and B to
the parameter of W . Note that this transformation occurs at the level of the instances of
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a1:A

@a1:A

b:B attrW:=@a1.attrA2+b.attrB

:W
roleB

roleA

roleW

#result

Figure 2.20: Example of a transformation using a MOLA program [27]

the model elements and thus, there might be more than one A or B, which explains the
presence of the foreach loop. The classic example of the transformation of UML class
diagrams to data base schemas can be found in [26]. The same comparison as the one
between the approach defined in this deliverable and UMLX can be made for Mola.

2.6.2 Software Evolution

This section briefly presents the question of software evolution and some related work.
Given that the amount of work being rather considerable, it does not aim to precisely
describe every technique, approach or solution that exists for software evolution. Instead,
we present a short introduction on how the importance of software evolution was raised,
and why changes and evolvability of systems is still a challenge. We also mention a
few solutions that support the evolution of software and show the difference that exist
between those techniques and the approach developed in this Deliverable.

The importance of evolution in the process of developing large software was first dis-
cussed in the early seventies [33], after a study of the software process in 1968 [32]. Due
to the recurring need of improvements, it was quickly stated that major programs that are
commonly used are always incomplete such that they constantly undergo changes and
evolution [35]. These modifications can be caused, for instance, by new requirements,
changes in the requirements, corrections of errors or suppression of outdated elements.
In a period of twenty years, eight laws of software evolution were defined, starting by
the first three in [33] to the last two laws, first published in [34]. The first six laws were
also revisited in [34]. In addition, it was stipulated in [38] that software keep growing and
changing while [46] argued that software age and their quality thus degrades with time.

Although a considerable amount of work and research followed these facts in the past
decades, the question of evolution in the software process remains a challenge today
[39]. In particular, it is still considered that the evolution should be placed at the center of
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the development process and the concept of change should be integrated in the software
life-cycle [39]. Other challenges exist around the concept of change and evolution man-
agement, refer to [39] for the complete description. Nonetheless, we can present several
achievements in the context of software evolution. One of the first and best known good
practice that was defined to facilitate software changes and evolution is probably to an-
ticipate change and design the systems in a way that allows evolvability. A key concept
of such practice was the modularity of the system, such that a change to one component
of the software should not affect (or affect as slightly as possible) the others [45]. How-
ever, [48] specified that there is not a single definition of evolvability and instead, defines
evolvability as "a composite quality which allows a system’s architecture to accommodate
change in a cost effective manner while maintaining the integrity of the architecture". This
definition is supported by a taxonomy of change which includes four properties: general-
ity; adaptability; scalability and extensibility.

Studying the evolution of software has often been accomplished by an empirical obser-
vation of the software throughout its history [39]. However, to be able to interpret the
collected data, [39] mentions the necessity of defining a theory of evolution, which follows
the idea presented in [37] and [36]. On a smaller scale, a classification of 12 different
types of software evolution and software maintenance was given in [8]. This taxonomy,
focused on the purpose of a change, is refined in [7] where other points of view, such as
the how, the when or the where, are considered. In [6], a list of possible changes that
could occur on UML diagrams is given, together with an approach to define impact anal-
ysis. Another idea is also presented in [12], where understanding the evolution is seen
as properly representing the software history. This approach provides a metamodel for
software evolution analysis, called Hismo, centered around history as a first-class entity.
Although the work presented above allows one to analyze and support evolution, none of
the techniques provide a means to explicitly represent and apply changes to the systems.

Techniques to support and apply evolution on software have also been defined at the
level of source code. For instance, [29] presents the evolution of rule-based programs
and provides an operator suite for the transformation of such programs. This is however
limited to rule-based program, such as definite clause programs or SOS specifications.
The rules are themselves expressed in code, with for example the Prolog directives that
invoke a meta-programming operator add/2. Figure 2.21 illustrates an example of such
a transformation. This approach is thus only focused on the code. The self-adaptive
software [49] also provides techniques to allow systems to automatically adapt to change
in their environment. This approach uses the concept of a feedback loop which allows the
system to adjust itself during its execution. However, as opposed to the work presented in
this deliverable, this solution treats changes when they occur but do not anticipate them.
Both the solutions presented in [29] and [49] focus on the level of source code and hence
differ from the technique defined in this deliverable, which aim to represent evolution on
models expressed by UML diagrams. Representing evolution by model transformations
will be discussed in the next section.

An approach to model transformation and evolution at a high-level of abstraction is given
in [52]. The software process is seen as a sequence of evolutions, starting from an empty
model in which the developer subsequently adds new elements. Although the approach
is developed around UML, the models are generally considered as typed trees where
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:- add(+storee,valuate).
:- add(-storee,valuate).

Figure 2.21: Transformation of a rule-based program [29]

Class

"Sale"
Association

"sale"

Class
"Cashdesk"

"finishSale"
Operation Computed dependencies

create operation

"finishSale"

update design

Sale::
finishSale

Cashdesk::
finishSale

Parameter

update design

Figure 2.22: Representation of a concrete evolution illustrated in [52]

the nodes are model elements and the directed edges are "owner" relationships. Three
types of actions, namely add, update and delete, take a model element as argument and
apply the corresponding change. UML component diagrams are then used to graphically
represent such evolutions. Concretely, the components represent the actions and the
interfaces represent the model elements. A concrete transformation of a UML model is
illustrated in Figure 2.22. This transformation consists in placing the method FinishSale
of the class Cashdesk in the class Sale and replacing the body of the method FinishSale
in Cashdesk by a call to the method moved to Sale. The transformation is also repre-
sented on the class diagram, as shown in Figure 2.23. This approach is very similar to
the one presented in this deliverable. It covers however some additional concepts, since
the level of abstraction of UMLseCh does not include the body of methods. On the other
hand, the language that we will define in Chapter 2.1 represents the evolutions more
explicitly. Indeed, Figure 2.22 does not clearly indicate how the elements are updated
and this information cannot be found on the class diagram of Figure 2.23 either. In ad-
dition, UMLseCh does not include graphical representations as the ones of Figure 2.22
and remains compliant to the UML specifications [44]. The solution of [52] and the one
described in this deliverable thus target a challenge specifying that "modeling languages
should provide more direct and explicit support for software evolution. The idea would be
to treat the notion of change as a first-class entity in the language" [39].
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Cashdesk

exmode:boolean

EnableExpress()

DisableExpress()

StartSale()

FinishSale()

cardPay(c:Card)

cashPay(a:double, out c:double)

enterItem(code:Barcode,qty:int)

Sale

complete:boolean

total:double

Sale(c:boolean,d:Date)

1

1 sale

(from saleTotal)

UpdateTotal

«Manualrefine»

(from saleTotal)

«Manualrefine»

UpdateSaleFinishSale

(from saleTotal)

saleTotal

«ExecutionList»

(from saleTotal)

«CreateOperationParameter»

AddSaleFinishSale

Figure 2.23: Representation of a concrete evolution on the class diagram, as shown in [52]
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3 Model-Based Verification under Evolution

Security verification of UML models can be an expensive task (in time and resources)
since security properties are often challenging to verify. The evolution of the models
through different system versions poses the problem of the re-verification of the desired
security properties. This chapter presents results towards addressing this challenge in
the context of the UML security extension UMLsec. We investigate the security analysis
of UMLsec models with respect to different evolving scenarios, with the main goal of re-
using (when possible) the verification results from before the evolution. In particular we
present results for both structural and behavioural diagrams. This approach is validated
by a tool implementation of these verification techniques that extend the existing UMLsec
tool support and that is significantly more efficient than re-checking the complete evolved
model, as presented in Chapter 7. In this Chapter however, we discuss the problem of
model evolution for security properties expressed in UMLsec independently of the trans-
formation language used to express the evolution. We just assume that the delta between
two models can be parsed from the notation (as it is the case for UMLseCh).

3.1 Verification Strategy

Evolving a model means that we either add, delete, or / and substitute elements of this
model. To distinguish between big-step and small-step evolutions, we will call “atomic”
the modifications involving only one model element (or sub-element e.g. adding a method
to an existing class or deleting a dependency). In general, given two diagrams A and B
which are secure, there need not be a sequence of atomic evolutions transforming A into
B such that each of the atomic transformations preserves security (i.e., there may be
intermediate diagrams which may not be secure). Therefore the goal of our verification is
to allow some modifications to happen simultaneously.

Since the evolution is defined by additions, deletions and substitutions of model elements,
we introduce the sets Add, Del, and Subs, where Add and Del contain objects represent-
ing model elements together with methods id, type, path, parent returning respectively an
identifier for the model element, its type, its path within the diagram, and its parent model
element. These objects also contain all the relevant information of the model element
according to its type, i.e., if it represents a class, we can query for its associated stereo-
types, methods, and attributes. For example, the class “Customer" in Fig. 3.1 can be
seen as an object with parent the subsystem “Book a flight”. It has associated a list of
methods (empty in this case), a list of attributes (“Name” of type String, which is in turn
an model element object), a list of stereotypes (« critical ») and a list of dependencies
(« call » dependency with “Airport Server”) attached to it. By recursively comparing all the
attributes of two objects, we can establish whether they are equal.

The set Subs contains pairs of objects as above, where the type, path (and therefore
parent) methods of both objects must coincide. We assume that there are no conflicts
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Airport server

«call»

pay(Real amount): Boolean

requestFlight(): Flight

«critical»

{high={pay(Real amount)}}
Customer «critical»

{high={pay(Real amount)}}

Name: String

Book a flight
«secure dependency»

Figure 3.1: Class diagram Annotated with « secure dependency » before evolution

between the three sets, more specifically:

@ o, o′(o ∈ Add ∧ o′ ∈ Del ∧ o = o′)

guarantees one does not delete and add the same model element which would be trivial.
Additionally:

@ o, o′(o ∈ Add ∨ o ∈ Del) ∧

((o, o′) ∈ Subs ∨ (o′, o) ∈ Subs)

which prevents adding/deleting a model element present in a substitution (as target or as
substitutive element).

As explained above, in general, an “atomic” modification (that is the action represented
by a single model element in any of the sets above) could by itself harm the security of
the model. So, one has to take into account other modifications in order to establish the
security status of the resulting model. We proceed algorithmically as follows: we iterate
over the modification sets starting with an object o ∈ Del, and if the relevant simultaneous
changes that preserve security are found in the delta, then we perform the operation
on the original model (delete o and necessary simultaneous changes) and remove the
processed objects until Del is empty. We then continue similarly with Add and finally
with Subs. If at any point we establish the security is not preserved by the evolution we
conclude the analysis.

Given a diagram M and a set ∆ of atomic modifications we denote M [∆] the diagram
resulting after the modifications have taken place. So in general let P be a diagram
property. We express the fact that M enforces P by P (M) (and conversely by ¬P (M)).
To show soundness for the security preserving rules R for a property P on diagram M
means:

P (M) ∧R(M,∆)⇒ P (M [∆]).

To prove that the algorithm described above is sound with respect to a given property P
we show that every set of simultaneous changes accepted by the algorithm preserves P .
Then, transitively, if all steps were sound until the delta is empty, we reach the desired
P (M [∆]).
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We assume the existence of these delta sets to be able to carry out our analysis in the
following. One could obtain them by using a transformation specific language such as
QVT [3] or by using UMLseCh (see Chapter 2). Alternatively one could compute the
difference between an original diagram M and the modified M ′. This is nevertheless not
central to our discussion, which focuses on the verification of evolving systems rather
than on model transformation itself.

3.1.1 Evolving Secure Structural Diagrams

In this section, we discuss evolving structural UMLsec diagrams. We assume that the
starting diagram is secure with respect to the properties that can be specified using
UMLsec. The idea is to classify all possible single evolutions on model or sub-model
elements and to decide whether these modifications preserve the desired security proper-
ties of the system. If by themselves they do not, we discuss which simultaneous changes
must take place in order to preserve security.

As examples of a structural UMLsec diagrams, we discuss the evolution of class diagrams
together with the « secure dependency » stereotype and the evolution of deployment dia-
grams together with « secure links ».

3.1.1.1 Class Diagrams

The stereotype « secure dependency » requires that for every dependency (« send » or
« call ») between two classes in a class diagram such that in one of both classes a tag
specifies a security requirement for a method or attribute
(for example { high = {method()} }resp.{ secrecy = {method()} },{ integrity = {method()} }), then
the other class has the same tag for this method/attribute as well (for example see Fig.
3.1). It follows that the computational cost associated to verify this property depends on
the number of dependencies. We analyze the possible changes involving classes, de-
pendencies and security requirements as specified by tags and their consequences to
the security properties of the class diagram.

Formally, we can express this property as follows:

P (M) : ∀C,C ′ ∈M.Classes (∃d ∈M.dependencies(C,C ′)

⇒ C.critical = C ′.critical)

whereM.Classes is the set of classes of diagramM , M.dependencies(C,C ′) returns the set
of dependencies between classes C and C ′ and C.critical returns the set of pairs (m, s)
wherem is a method or an object shared in the dependency and s ∈ {high, secrecy, integrity}
as specified in the « critical » stereotype for that class.

We now analyse the set Del of modifications by distinguishing cases on the type of o ∈
Del. We will give explicitly the proofs for the deletion case, afterwards we will only argue
informally on why the accepted evolution is sound.

Deletion
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• Class: We assume that if a class C̄ is deleted then also the dependencies coming
in and out of the class are deleted, say by deletions D = {o1, ..., on}, and therefore
P (M [o,D]) holds since clearly:

P (M [o,D]) : ∀C,C ′ ∈M.Classes \ C̄ (∃d ∈M.dependencies(C,C ′)

⇒ C.critical = C ′.critical)

holds given P (M), because the new set of dependencies of M [o,D] does not con-
tain any pair of the type (x, C̄), (C̄, x).

• Tag in « critical »: If a security requirement (m, s) associated to in class C̄ is
deleted then it must also be removed from other methods having dependencies with
C (and so on recursively for all classes CC̄ associated through dependencies to C̄
) in order to preserve the secure dependencies requirement. We assume P (M)
holds, and since clearly M.Classes = (M.Classes \ CC̄) ∪ CC̄ it follows P (M [o,D])
because the only modified objects in the diagram are the classes in CC̄ and for that
set we deleted symmetrically (m, s), thus respecting P .

• Dependency: The deletion of a dependency does not alter the property P since
by assumption we had a statement quantifying over all dependencies (C,C ′), that
trivially also holds for a subset.

Addition

• Class: The addition of class, without any dependency, clearly preserves the secu-
rity of P since this property depends only on the classes with dependencies asso-
ciated to them.

• Tag in « critical »: To preserve the security of the system, every time a method is
tagged within the « critical » stereotype in a class C, the same tag referring to the
same method should be added to every class with dependencies to and from C
(and recursively to all dependent classes). We can express this rule as follows:

∃o∈Add o.critical⇒

∀C∈o.parent.dependentClasses (∃o′∈Add o′.parent = C ∧ o′.securitytag = o.securitytag)

where the method critical returns true if the object is a « critical » stereotype, depen-
dentClasses returns the set of classes associated through dependencies to a given
class and securitytag returns the security tags associated with the « critical » stereo-
type. The execution of these simultaneous additions preserves P since the sym-
metry of the critical tags is respected through all dependency-connected classes.

• Dependency: Whenever a dependency is added between classes C and C ′, for
every security tagged method in C (C ′) the same method must be tagged (with the
same security requirement) in C ′ (C) to preserve P . So if in the original model this
is not the case, we check for suitable additions that preserve this symmetry.
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Airport server

«call»

pay(Real amount): Boolean

requestFlight(): Flight

«critical»

checkIn(): Boolean

{high={pay(Real amount),checkIn()}}Customer «critical»

{high={pay(Real amount)}}

Name: String

Book a flight
«secure dependency»

Figure 3.2: Class diagram annotated with « secure dependency » after evolution

Substitution

• Class: If class C is substituted with class C ′ and class C ′ has the same security
tagged methods as C then the security of the diagram is preserved.

• Tag in « critical »: If we substitute { requirement = method() } by
{ requirement’ = method()’ } in class C, then the same substitution must be made in
every class linked to C by a dependency.

• Dependency: If a « call » (« send ») dependency is substituted by « send » (« call »)
then P is clearly preserved.

Example Assume that in a flight booking system (as in the class diagram in Fig. 3.1),
we want to add a method within a class diagram that is secure with respect to « secure
dependency » as depicted in Fig. 3.2. We also mark the new method “checkIn()” as
critical for security with the tag {high} in the class “Airport server”. This is a security
violating evolution since we did not add the same method to the methods tagged within
{high} in the “Customer” class.

3.1.1.2 Deployment Diagrams

The UMLsec stereotype « secure links » imposes constraints on the physical links be-
tween two nodes that are logically connected by a dependency. If for example a « call »
dependency between nodes C and S is further annotated with the stereotype « secrecy »
then « secure links » (for a default adversary) requires that the physical node between
C and S is « encrypted » (for details see [19]). We can therefore characterize possible
further evolutions of a deployment diagram that fulfils the security requirements given by
« secure links » by considering the deletion, addition and substitution of physical links,
nodes, dependencies and security related stereotypes. We assume that there is at most
one physical links between two nodes, and that all physical links are annotated with a
UMLsec specific stereotype. Moreover we assume that the initial UMLsec model is valid
(i.e secure).
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Formally, The pre-condition P (M) holds:

P (M) :∀d ∈M.dependencies,

∀s ∈ {<< secrecy >>,<< integrity >>,<< high >>}
(s ∈ d.stereotypes⇒ d.hasLink ∧ (d.link).secureAgainst(s))

(3.1)

whereas

M.dependencies is the set of all dependencies in the given model.

d.stereotypes returns the set of stereotypes attached to the dependency d.

d.link returns the link corresponding to the dependency d
(only one link is assumed to exist at most between two nodes)

secureAgainst(stereotype s) returns TRUE, if the link
fulfills the security requirement given by s

An atomic change o may either maintain the security of the model by and of itself or
by applying simultaneous changes C = {o1, ..., on}. If this is possible, and all changes
present in the changeset ∆ can and are executed and thus removed from the changeset
until ∆ is empty, then and only then P (M [∆]) holds.

Detailed analysis of individual model element and change types After defining the
necessary conditions the individual model elements of a deployment diagram are ana-
lyzed in regards to different types of change.

Deletion

• Node It is assumed that by deleting a node all components and interfaces contained
in the node, as well as all associated links are also deleted.
This leads to the deletion of all associated dependencies dN .
The deletion of those dependencies is noted by D = {o1, ..., on}.
P (M [o,D]) holds, since the following applies:

P (M [o,D]) :∀d ∈M.dependencies \ dN ,
∀s ∈ {� secrecy �,� integrity �,� high�}
(s ∈ d.stereotypes⇒ d.hasLink ∧ (d.link).secureAgainst(s))

This is clearly valid, as a property that is true for a given set is also true for a subset
of that set.

• Component All associated interfaces and therefore every associated dependency
are also deleted, which again leads to a subset of dependencies. As a result the
above property clearly holds.
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• Interface As with components the associated dependencies are deleted, leading to
a subset, see above.

• Dependency The deletion of a dependency leads to a subset, see above.

• Link A link by itself may not be deleted, if the dependencies between the according
link nodes have security stereotypes applied to them. If that is the case, d.hasLink
after deletion would resolve to a false statement negating the property. Ergo the
dependencies mentioned have to be deleted as well, which again leads to a subset
of dependencies, see above.

• Tag (Threat)This completely nullifies the security requirements. Therefore this
change is not expanded upon.

• Stereotype (Dependency) The deletion of a stereotype applied to a dependency
causes a weakening of the security requirements, as the above property depends
upon the testing of the applied stereotypes.

• Stereotype (Link) This is not allowed or rather not defined. A link with no stereo-
type can not be used to infer information regarding the security. Thus no positive or
even definitive answer regarding the security of the model can be given.

Addition

• Node The addition of a node by itself doesn’t change the state of the security, as
no changes regarding the dependencies or links take place.

• Component If the component is the only thing added, meaning no additional asso-
ciated dependencies, the security is preserved, as no additional stereotypes have
to be taken into account.

• Interface An interface added by itself, i.e. with no dependencies attached, pre-
serves the security of the model, see above.

• Dependency (without Stereotypes) P (M [o]) holds, because although the set
M.dependencies has grown, the set d.stereotypes of the new dependency d is still
empty.

• Dependency (with Stereotypes) see Stereotype (Dependency)

• Link If P (M) holds as a pre-condition and a link l is to be added between nodes n1

and n2:

– if there hasn’t been a link between n1 and n2 prior to the change, then there
can’t be any dependencies with security relevant stereotypes applied to them
between n1 and n2, else P (M) wouldn’t hold because d.hasLink would resolve
to false. Therefore the link may be added without any simultaneous changes.

– if a link between n1 and n2 already exists, no further link is allowed to be placed
between those nodes due to the fact that only one link is allowed between two
nodes.
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• Tag (Threat) The addition of a threat tag has to be followed by a complete re-
verification of the model as the return value of the function secureAgainst(s) is de-
pendent on the type of threat added.

• Stereotype (Dependency) If a stereotype sadd of the set of the three security rele-
vant stereotypes is added to a dependency d, the set of stereotypes
d.stereotypes increases.
Therefore one has to check, if the following holds:

∀s ∈ d.stereotypes ∪ sadd ⇒ d.hasLink ∧ (d.link).secureAgainst(s)

– If (d.stereotypes \ sadd) 6= {∅} is true, P (M) holds for d.stereotypes \ sadd.
The part of the property that remains to be verified is
(d.link).secureAgainst(sadd). If this is not the case, a simultaneous substitu-
tion S = {o1} of the link stereotype with a stereotype conforming to the security
requirements given by the threat tag has to be carried out so that P (M [o, S])
holds.

– If (d.stereotypes\sadd) = {∅} is empty preceding the change, it is also possible
that no corresponding link exists. If such is the case, a simultaneous addition
A = {o2} has to be carried out, whereas o2 refers to the addition of a link
between the supplier and client nodes of the dependency d. Following that
P (M [o,A]) holds.

• Stereotype (Link) The addition of a stereotype to a link is possible only if no stereo-
type was attached to the link prior to the change, as a link may not have more than
one stereotype attached to it. If P (M) holds, the model M preceding the change
had no security relevant stereotypes attached to the dependencies corresponding
to the link in question. If such would be the case, the link would also already have
a stereotype attached to it.

Substitution

• Node If all components and links belonging to the old node are transplanted to the
new node, the security requirements do not change. If there are changes to any of
the said model elements, see the corresponding section.

• Component If all dependencies and interfaces remain the same way with the new
component, the security requirements do not change. If that is not the case, see
the corresponding section.

• Interface If the dependencies connected to the old interface are connected to the
new interface in the same way, the security requirements do not change. In other
cases see the corresponding section.

• Dependency (different nodes) If a dependency da between nodes n1, n2 is sub-
stituted with a dependency dn between nodes n3, n4, whereas n3 or n4 is different
from n1 as well as n2,dn can be treated like an addition of a dependency, see the
corresponding section. The stereotypes of the new dependency may be handled
like additions of stereotypes to a dependency.
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• Dependency (same nodes) If the nodes of the substituted dependency do not
change, the only meaningful change is a substitution of the stereotypes attached to
the dependency and are described in the corresponding section.

• Tag (Threat) If a threat tag is substituted with a different threat tag, the security
requirements regarding the model change. This requires a complete re-verification
of the model.

• Stereotype (Dependency) The stereotype substitute can be handled like the addi-
tion of a stereotype to a dependency. See the corresponding section.

• Stereotype (Link) If a link stereotype is substituted, for all the dependencies must
be checked, whether the security requirements are satisfied.

3.1.2 Evolving Secure Behavioral Diagrams

3.1.2.1 Activity Diagrams

The stereotype « rbac » defines the access rights of actors to activities within an activ-
ity diagram under a role schema. For this purpose there exist tags {protected}, {role},
{right}. An activity diagram is UMLsec satisfies « rbac » if for every protected activity A
in {protected}, for which an user U has access to it, there exists a pair (A,R) in {rights}
and a pair (R,U ) in {roles}. The verification computational cost depends therefore on the
number of protected activities.

Formally:
P (M) : ∀A ∈M.protected ∀ U ∈M.users (U.hasAccess(A)

⇒ ∃R ((A,R) ∈M.rights ∧ (R,U) ∈M.roles))

As before, we distinguish cases in the evolution to discuss the security preservation. We
assume that all activities associated to a user are reachable.

Deletion

• Activity/vertex: The deletion of an activity or a vertex clearly does not alter P
(independently of the fact that the activity is protected or not).

• Pair activity/right: The deletion of a pair (A,R) in {rights} preserves P if together
with this deletion the activity A is deleted from all users U with role R.

• Pair role/user: The deletion of a pair (R, U ) in {roles} preserves P if together with
this deletion all activities linked to this role via access rights are deleted for U .

Addition

• Activity: The addition of a protected activity A to actor U must be accompanied
by the addition of a pair (A,R) and a pair (R,U ) if there are no such two pairs for a
given R′.
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Book

Customer Airport

Book a flight

{right=(Book,Admin)}

«rbac»
{protected=(Book)} {role=(Admin,Airport)}

Request flight

Pay

Check availability

Customer

Check−in
{protected=(Check−in−online)} 

Check−in
online

Airport

Book
Pay

Request flight

Check−in
online

Book

Check availability

Customer

Book a flight «rbac»

Airport

{protected=(Book,Check−in online)}
{right=(Book,Admin)} {role=(Admin,Airport)}

Figure 3.3: Activity diagram annotated with « rbac » before evolution (left-hand side), added model elements
(middle), and after evolution (right-hand side)

• Vertex: Since we assume all activities are reachable, the addition of a vertex does
not affect the security properties of the diagram.

• Pair activity/right or role/user: The addition of rights or roles to a secure diagram
do not compromise by themselves the fulfilment of P .

Substitution

• Activity: If a protected activity A is substituted by A′ then there must be a simulta-
neous substitution of A by A′ in all pairs in {rights} where A appears.

• Condition on a vertex: This is irrelevant for P if we assume the condition is satis-
fiable.

• Pair activity/right: The substitution of a pair (A,R) by a pair (A′,R) must be accom-
panied by a substitution of the activity A by A′. Likewise, the substitution of (A,R) by
(A,R′) is accepted only when the role R is substituted by R′ in the pairs contained
in {roles} and {rights}.

• Pair role/user: Similar to the previous case.

Example In Fig. 3.3 (left-hand side), we show an activity diagram to which we want to
add a new set of activities, introducing a web-check-in functionality to a flight booking
system (as in the example in the previous section). The new activity “Check-in online”
(middle of Fig. 3.3) is protected, but we do not add a proper role/right association to this
activity, thus resulting in a security violating diagram (right-hand side Fig. 3.3).

D4.2 Formally founded automated security analysis
version 1.3 | page 71/167



Figure 3.4: Example of a secure channel

3.1.2.2 Sequence Diagrams

In this section we want to analyse the evolution of Sequence Diagrams where a symbol
should remain secret to unwanted partners. This case is particularly challenging with
respect to the examples presented before, because the message exchange might involve
a non-trivial behaviour between at least two entities and the adversary. This adversary is
of a default type over an Internet communication channel, as described in the background
section. We assume however, that it is of a Dolev-Yao type, that is, he is not able to
read messages encrypted with keys he does not possess. In this case we will treat the
possible evolutions (addition, deletion and substitutions of parameters in a message and
constraints) mostly as "atomic". This means that we will often discuss the consequences
of a single change without considering simultaneous other changes that could preserve
security as we did in the previous examples. This is due to the complexity of the setting,
where the simultaneous evolutions that are security preserving are much larger than in
static diagrams. One could enrich these rules in the future with frequent operations that
are security preserving. Before describing the possible evolutions and the necessary
enforcing rules to preserve the desired security properties, we begin with a motivating
example. We will informally describe how the verification takes place, for more details on
this formalization see [21].

We consider a secure channel [19] as defined in Fig. 3.4. If we assume that the set of
keys consists of:

Keys = {KR,K
−1
R ,KS ,K

−1
S , kj , ka,KA,K

−1
A }

(where kj , ka are symmetric and the rest are asymmetric keys) and we denote the knowl-
edge of the adversary by means of a knows predicate then the basic knowledge that a
default adversary can gain of this message exchange is:

knows({SignK−1
R

(kj :: j)}KS
)∧

(knows(SignK−1
R

(kj :: j))⇒ knows({d :: j}kj ))∧
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Figure 3.5: Dependency tree depicting the secrecy preservation of the value d

(knows({SignK−1
R

(ka :: j)}KS
)⇒ knows({d :: j}ka))

as we can see by solving the constraint on the sender side (one can obtain an automatic
translation from Sequence diagrams to such predicates using the UMLsec tool, see [20]).

This knowledge can be enlarged by the adversary by means of encryption, decryption,
signature and extraction with the keys in his possession, that we assume are:

knows(KR) ∧ knows(KS) ∧ knows(ka) ∧ knows(KA) ∧ knows(K−1
A )

(since the other are supposed to be private before the execution of the protocol).

We can build a dependency tree of symbols based on the cryptographic operations that
an adversary could perform using his knowledge on the system, as shown in Fig. 3.5.
We denote with T (respectively with F) the fact that the secrecy of a given symbol is pre-
served. Such a tree can be generated automatically using the first order logic formula that
represents the knowledge of the adversary by encoding all possible operations he can
perform. In this example, all symbols contained in the message exchange are contained
in the tree. In general one can generate finitely many such trees to cover all symbols in
the sequence diagram (not necessary related to the symbol which is supposed to remain
secret) as this will come handy to analyse the evolution.

We can see from the dependency tree, that there are many symbols from which the value
of truth of the secrecy of d could be altered, namely:

Y = {K−1
S ,K−1

R :: j, kj , {SignK−1
R

(ka :: j)}KS
, d}.

Shall any of this symbols change its value of truth (i.e. secrecy not preserved), then
the secrecy of d would be compromised. From this analysis we can conclude that if we
foresee to add a message msg to the protocol in a future version of the protocol, we have
to be careful not to leak any of the symbols in Y . For example, if we add a parameter
msg at any point, it must hold :

¬leaks(msg, Y )

where the predicate leaks(x, Y ) means that from x and all other symbols the adversary
can derive from the protocol (as stored in the dependency tree) it is not possible to derive
any of the symbols contained in Y .
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We now discuss more precisely the evolution of sequence diagrams in general. We as-
sume that the symbol that is supposed to remain secret is also d.

Deletion

• Parameter : The deletion of a parameter “shrinks" the knowledge of the adversary
instead of enlarging it. Therefore the single deletion of a parameter within a mes-
sage does not alter the security property of d. However, one should update the
dependency tree(s) associated to the Diagram after the deletion.

• Constraint: The deletion of a constraint could potentially harm security, since it
poses less requirements to gain the knowledge of certain symbols (the ones con-
tained in the message associated to the constraint). In particular, one can alter the
dependency tree of the d by re-computing the symbols below the ones that should
be returned if the constraint is fulfilled. In our example, if we fully delete the only
constraint, then we would have to enlarge the tree under d with all the combinations
of SignK−1

R
(x :: y)}KS

since we would not check any more whether x is a key or
whether y equals j. If we do not limit the number of encryptions an adversary can
perform, these combinations are endless: for example we could encrypt with the
same key forever in order to generate a value for x, and this could be a valid input
for S to return a message.

Addition

• Parameter: As explained above, in this case the addition of parameter x to a se-
quence diagram with set Y of symbols that could alter the secrecy value of d should
not leak, together with all the symbols known to the adversary, a symbol contained
in Y .

• Constraint: The addition of a constraint in a secure Sequence Diagram also shrinks
the knowledge of the adversary and does not harm the security of the system. The
dependency tree should be updated accordingly.

Substitution

• Parameter: In general, the substitution of a parameter could potentially harm the
security of d. We consider only the case where a key is substituted through the
whole protocol. In this case, if an unknown key for the adversary is substituted
by another unknown key that was not already part of the protocol, then security is
preserved.

• Constraint: Substitution of a constraint is only allowed if, as for the substitution of
a parameter, only unknown keys are replaced by new unknown keys.

3.2 Application to the Global Platform

In this section we present the application of the verification strategy to the GP Specifica-
tion. First we define and analyse two stereotypes tailored specifically for the GP life-cycle
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(which we will further use as part of the WP4-WP7 link in Chapter 5). Then we will see
how is secrecy preserved for the Secure Channel Protocol 01 and its evolution to SCP
02. Another example of the application of the UMLseCh approach to the POPS Case
Study will be introduced in Chapter 4 as part from the integration effort with WP6.

We consider the changes in the Global Platform Specification [2] between version 2.1.1
and 2.2. One important change in the specification regards the Card Life-Cycle, as de-
scribed in the following subsection.

3.2.1 Card Life Cycle

A GlobalPlatform card provides security services related to information exchanged be-
tween the card and an off-card entity. The security level of the communication with an
off-card entity does not necessarily apply to each individual message being transmitted
but can only apply to the environment and/or context in which messages are transmitted.
The concept of the Life Cycle of the card may be used to determine the security level of
the communication between the card and an off-card entity.

The GlobalPlatform defines Life Cycle models to control the functionality and security
of its components. Card Life Cycle is one of these models. From a GlobalPlatform
perspective, the card Life Cycle begins with the state OP_Ready. The other states in
this cycle are INITIALIZED, SECURED, CARD_LOCKED and finally TERMINATED.

Card Life Cycle State OP_READY: The state OP_Ready indicates that the runtime en-
vironment shall be available and the Issuer Security Domain, acting as the selected
Application, shall be ready to receive, execute and respond to APDU commands.

The following functionality shall be present when the card is in the state
OP_Ready:

• The runtime environment shall be ready for execution;
• The OPEN shall be ready for execution;
• The Issuer Security Domain shall be the implicitly selected Application for all

card interfaces;
• Executable Load Files that were included in Immutable Persistent Memory

shall be registered in the GlobalPlatform Registry;
• An initial key shall be available within the Issuer Security Domain.

Card Life Cycle State INITIALIZED: The state INITIALIZED is an administrative card
production state. The state transition from OP_Ready to INITIALIZED is irreversible.
This state may be used to indicate that some initial data has been populated (e.g.
Issuer Security Domain keys and/or data) but that the card is not yet ready to be
issued to the Cardholder.

Card Life Cycle State SECURED: The state SECURED may be used by Security Do-
mains and Applications to enforce their respective security policies. The state tran-
sition from INITIALIZED to SECURED is irreversible. The SECURED state should
be used to indicate to off-card entities that the Issuer Security Domain contains all
necessary keys and security elements for full functionality.
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Card Life Cycle State CARD _ LOCKED: The card Life Cycle state CARD_LOCKED is
present to provide the capability to disable the selection of Security Domain and Ap-
plications. The card Life Cycle state transition from SECURED to CARD_LOCKED
is reversible. Setting the card to this state means that the card shall only allow selec-
tion of the application with the Final Application privilege. Card Content changes in-
cluding any type of data management (specifically Security Domain keys and data)
are not allowed in this state. Either the OPEN, or a Security Domain with Card Lock
privilege, or an Application with Card Lock privilege, may initiate the transition from
the state SECURED to the state CARD_LOCKED.

Card Life Cycle State TERMINATED: The state TERMINATED signals the end of the
card Life Cycle and the card. The state transition from any other state to TER-
MINATED is irreversible. The state TERMINATED shall be used to permanently
disable all card functionality with respect to any card content management and any
life cycle changes. This card state is intended as a mechanism for an Application
to logically ’destroy’ the card for such reasons as the detection of a severe security
threat or expiration of the card. If a Security Domain has the Final Application privi-
lege only the GET DATA command shall be processed, all other commands defined
in this specification shall be disabled and shall return an error. If an application has
the Final Application privilege its command processing is subject to issuer policy.
The OPEN itself, or a Security Domain with Card Terminate privilege, or an Ap-
plication with Card Terminate privilege, may initiate the transition from any of the
previous states to the state TERMINATED.

Figure 3.6 illustrates the state transition diagram for the card Life Cycle.

Global view of the Scenario

A mobile network operator MOB propose a SIM card to its customers that will be used for
payment as a contactless credit card or for ticketing as a contactless transport card. The
USIM will embed a Java Card Virtual machine and a subset of GP.

We consider now the security properties the card Life Cycle using in POPS Scenario:

PA1-For any execution, whenever the card is put in the TERMINATED state by means of
a set status issued by a privileged application, then it should not be possible to revert to
another state

PA2-It should not be possible for an application that doesn’t have the Card Terminate
privilege to switch the card life cycle state to Terminated, whether via a SET STATUS
command (if the application is a SD) or the invocation to the GPSystem.terminateCard()
method

Evolving Secure State Diagrams

Given a model of the life-cycle (depicting the behaviour of the system as black-box, as we
will see in Chapter 5 the above named criteria may be verified thru UMLsec stereotypes,
as we will discuss in the following.
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Figure 3.6: Card life cycle state transitions in GP V2.2
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The stereotype « locked-status » with tag { status = Status } requires that no outgoing tran-
sition from a state with label Status exists.

The stereotype « authorized-status » with tag { status = Status } and
{ permission = Permission } requires that every incoming transition to a state with label
Status has within its guard the substring Permission.

Although we will discuss more details about the usefulness of this verification in the WP4-
WP7 link, we can already analyse the consequences of changes in the model with respect
to the two stereotypes.

We assume that the security properties in the starting state machine are satisfied. Now
we analyze the possible changes on states, transitions and guards with respect to both
above named stereotypes as done previously for other stereotypes. This is possible since
the nature of the verification is purely statically.

Deletion

• State (including all incoming and outgoing transitions) or a transition or a guard
with respect to « locked-status » does not alter the security property from a state
machine.

Deletion of a state or transition can cause that one or even more states from state
machine are not reachable anymore.

• Guard with respect to « authorized-status »: Let D = {o1, ..., on} the set of objects
to be deleted . We separate the model into two parts;

One part consists of the guard o, which must be deleted, its related transition and
the target state of this transition. This submodel is called M1. Let P be the security
property with respect to stereotype « authorized-status », P is for each element o
from D satisfied if the following condition is fulfilled;

If deleted guard contains the condition { permission = Permission } and the transi-
tion corresponding to this guard has target state which is labeled as ”Status”, the
transition itself should be deleted. This is described by the rule:

∀o∈D(o.type = guard ∧ Permission ∈ o.permission ∧
o.parentTransition.targetState.label = Status)⇒
∃o′∈D(o′ = o.parentTransition)

The security property P is always satisfied in the other part of the model (defined as
M2 : M \M1) with respect to « authorized-status », because in this part there exists
no state with label ”Status”.

Thus the security property in evaluated model P (M [o,D]) results as:

P (M [o,D])⇒ P (M1[o,D]) ∧ P (M2[o,D])
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Addition

• State Addition of a new state without any transition does not violate the security
property from a state machine.

• Transition with respect to « locked-status »: Let A = {o1, ..., on} the set of objects
to be added. We separate the model into two parts;

One part consists of new Transition o, its source state and target state. This sub-
model is called M1. Let P be the security property with respect to stereotype
« locked-status ». P is satisfied for each o in the set A if the following condition
is fulfilled;

If the source state from new transition o is labeled as Status, then the target state
from the transition should be labeled as Status too, i.e. the new transition should
have the same state as source and target. We can express this rule as follows:

∀o∈A(o.type = transition ∧ o.sourceState.label = Status)⇒
(o.targetState = o.sourceState)

The security property P is always satisfied in the other part of model (defined as
M2 : M \M1) with respect to « locked-status », because in this part exists no state
with label Status.

Thus the security property in evaluated model P (M [o,A]) results as:

P (M [o,A])⇒ P (M1[o,A]) ∧ P (M2[o,A])

• Transition with respect to « authorized-status »: Let A = {o1, ..., on} the set of
objects to be added. We separate the model into two parts;

One part consists of new Transition o and its target state. This submodel is called
M1. Let P be the security property with respect to stereotype « authorized-status ».
P is satisfied for each o in the set A if the following condition is fulfilled;

∀o∈A(o.type = transition ∧ o.targetState.label = Status)⇒
∃o′∈A(o′ = o.guard ∧ Permission ∈ o′.permission)

The security property P is always satisfied in the other part of model (defined as
M2 : M \M1) with respect to « authorized-status », because in this part exists no
state with label Status.

Thus the security property in evaluated model P (M [o,A]) results as:

P (M [o,A])⇒ P (M1[o,A]) ∧ P (M2[o,A])

• Guard Addition of a new guard does not alter the security properties.
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Substitution Let S = {((o1, o
′
1), ..., (on, o

′
n))} the set of objects pairs to be substituted.

• State with respect to « locked-status »: In case that a state o , which is not labeled
as Status, is substituted with a State o′ , which is labeled as Status , o′ should have
no outgoing transition to preserve the secure requirement of the system.

• State with respect to « authorized-status »: If a state o , which is not labeled as
”Status”, is substituted with a state o′ , which is labeled as Status, all incoming tran-
sitions to o′ should have a guard, which contains the condition { permission = Permission }
to preserve the secure requirement of the system.

• Transition If a transition o is substituted with a transition o′, to preserve the secure
requirement of the system, o′ should have the same rule explained by addition of a
new transition.

• Guard with respect to « locked-status »: Substitution of a guard does not alter the
secure properties of the system.

• Guard with respect to « authorized-status »: If a guard o which contains
{ permission = Permission } is substituted with a guard o′ without this condition, the
transition corresponding with o′ should be deleted too.

3.2.2 Evolution of the Secure Channel Protocol

We now take as an example within the Global Platform specification the Secure Chan-
nel Protocol 02 (SCP02) Authentication Phase seen as an evolution of its predecessor,
the SCP01. The SCP01 works as follows: the host initiates the Authentication Phase by
sending a random challenge NH to the smartcard. The card then generates a random
challenge NC and uses a function based on pre-shared keys to generate a symmetric
session key with parameters N ′H (we change the challenge symbol since the card may
actually receive a manipulated message from an adversary in the communication chan-
nel) and NC . It then signs a cryptogram using the session key and sends it to the host
together with the card challenge. The host should be then able to verify that signature by
using the same function with both challenges as parameters.

The security of this protocol relies on the pre-shared key generating function. Formally,
we can analyze SCP01 in a similar way as done in the Secure Channel Example in
Section 3.1.2.2. If we assume that the set of nonces is:

Nonces = {NC , NH , N
A
C , N

A
H}

then the secrecy of d depends on the secrecy of K(NH , NC) or the secrecy of
K(NA

H , NC). Therefore the secrecy of d is guaranteed by the assumption that the adver-
sary doesn’t know K(x, y) for any x, y ∈ Nonces.

In the SCP02 an extra parameter is given to the generating function: a session sequence
number seq. This change in the protocol was introduced to to limit the lifetime of the
(pre-shared) keys between host and card. We can model this by using one application of
« substitute-all » and one application of « add » as shown in Figure 3.7.
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Figure 3.7: Secure channel protocol evolution

We can therefore reuse the confidentiality result of our analysis of SCP01 since the ad-
dition of the symbol seq does not alter the dependency tree of d, and we can reflect the
application of « substitute-all » in the dependency tree by simply substituting the corre-
sponding symbols and obtaining:

knows(d)⇔ knows(K(NH , NC , seq) ∨ knows(K(NA
H , NC , seq)).

Again, since the assumption is:

∀ x, y ∈ Nonces, seq ∈ N ¬knows(K(x, y, seq))

then secrecy of d is preserved in SCP02.

Authenticity is also enforced for both the host and the client by the random challenges:
even if the adversary records a message exchange for a given session between the card
and a host, a new session will have new values for NH and NS , making the old signa-
tures useless for forging the identity of the host/card. A formal argument similar to the
one done for the secrecy of d can be done by means of the correspondence predicates
init(x) and ok(x) inserted appropriately in conjunction with the knows predicates. This
correspondence predicates state that the node x has started the communication and that
node y has certified the authenticity of x respectively. The conjecture to show in order to
prove authenticity of the protocol (for example for the card C) is then:

ok(C)⇒ init(C).

To save space, we don’t show the details of this argument, but we highlight that the core

D4.2 Formally founded automated security analysis
version 1.3 | page 81/167



of the proof is the fact that the adversary cannot forge the signature of either the Card or
the Host because of the secrecy of all possible keys generated by the function K(x, y).
This way he is forced to wait until the card (respectively the host) generates a signature,
triggering the correspondence predicate init. Authenticity is thus preserved by the above
mentioned evolution because the protocol maintains the secrecy of all keys generated by
the extended function K(x, y, z).
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4 Model-based and Code-based Verification

This chapter presents the common work done as an integration effort between Work
Packages 4 (Model-based verification) and 6 (Code-based verification). This work is
based on the POPS case study (common to both Work Packages) and in particular on the
GP specific control-flow property and on classical non-interference. These correspond to
the “Information Protection” property and the change requirement “Software Update” of
the POPS case study as defined in [50].

Inputs

output output

Comparison

Report

PASS

WP4 WP6 VerificationVerification

PASSPASS

Model-Analysis Code-Analyisis

UML Security
property bytecode

Java
models

Figure 4.1: General process
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The general idea behind this work is depicted in Figure 4.1. An application (or set of
applications) modeled in UML can be verified against a security property by means of the
WP4 techniques at the design phase, some output being produced after the verification.
The same property can be verified on an implementation of the same application (set of)
and the output produced by this process can be then compared to the output produced
at design time. One can then report on the differences, thus for example informing about
interesting inconsistencies as we will see in the following.

The Change aspect The techniques used on both Work Packages to deal with evolu-
tion can be then applied in parallel to iterate this process over the application life-time.
This works similarly to the process depicted in Figure 4.1, where the inputs are evolved
UML models, security properties and byte code. The verification under evolution tech-
niques developed in WP4 and WP6 are used for dealing respectively with evolving mod-
els and evolving bytecode. After the verification has taken place, instead of comparing
the whole model and code analysis output artifacts we can compare only the modified
outputs, following the overall SecureChange approach. The precise definition of this
comparison for the cases of control flow and non-interference introduced in this chapter
is matter of current work and will be reflected in subsequent deliverables.

4.1 Control flow analysis

In this section we describe the verification process associated with the stereotype
« controlflow ». Intuitively, this stereotype enforces that a sequence diagram describing
the behavior of a set of methods (their classes and their methods) has no illicit control
flows between applications. This stereotype establishes an equivalence at the model
with the direct and transitive control flow models of the WP6 working at the code level
described in the deliverable D6.3 (Chapters 3 and 4). In addition to provide the model-
based verification process, we also provide some basic artifacts pushed to the code-
based verification process to permit a basic coherency verification between the design
level and the implementation level.

4.1.1 Model-based control flow analysis

4.1.1.1 UMLsec stereotype

A sequence diagram SD is a directed graph (Methods,Messages) that models ex-
changes of messages between methods of instances, where Methods is a set of fully
qualified method names A.C.m corresponding to method calls in the sequence dia-
gram, A ∈ Applications is an application, C is a class of application A and m is a
method that can be called on C either implemented in C or inherited, and Messages ⊆
Methods×Methods is a set of tuples (A.C.m,A′.C ′.m′), also written A.C.m→ A′.C ′.m′,
that denote invocation of method A′.C ′.m′ in method A.C.m.

Three tags are attached to the « controlflow » stereotype:
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• services ⊆ Methods the set of services shared by applications, i.e. methods that
can be invoked by other applications;

• transitive ∈ {yes,no} is a mandatory flag to precise if the control flow policy is to be
applied on direct method calls only (value no) or if the verification has to take into
consideration transitive method calls (value yes);

• policy ⊆ Applications × Methods the set of control flow policy rules where each
tuple (A,B.C.m) denotes that an application A is authorized to invoke the method
B.C.m.

The Figure 4.2 shows an example of sequence diagram inspired from the POPS use
case annotated with « controlflow » stereotype. This example consists in three applica-
tions, two of them having shared services to permit the others to invoke them. JTicket
is a simple ticketing application that, when needed, is refilled using money stored in
EPurse application. When the amount of money requested to the EPurse is not avail-
able, the EPurse tries to obtain more credits from the EMV application. The annotated
non-transitive control flow policy permits the JTicket to use EPurse’s services, and the
EPurse to use EMV’s services.

<<controlflow>>

<<Shareable>> <<Shareable>>

JTicket

:Applet

EPurse

transitive=no
services={EPurse.Services.debit, EMV.Services.debit}
policy={(JTicket, EPurse.Services.debit), (EPurse, EMV.Services.debit)}

:Services

debit(amount)

EMV

:Services

debit(amount)

status
status

refill(amount)

refillEMV(amount)

status

status

:Applet

Figure 4.2: Example of sequence diagram annotated with control flow policy.

4.1.1.2 Verification process

For the non-transitive case, the absence of illicit control flow property P is verified in a se-
quence diagram SD = (Methods,Messages) annotated with « controlflow » stereotype
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for the non-transitive case if:

P (SD) : ∀(A.C.m,A′.C ′.m′) ∈ Messages,
A 6= A′ =⇒ (A′.C ′.m′ ∈ services ∧ ∃(A,A′.C ′.m′) ∈ policy)

The example displayed in Figure 4.2 is free of illicit control flow as the two inter-application
method calls, debit of EPurse from JTicket and debit of EMV from EPurse, are authorized
by in the policy. In addition, there is no inter-application method call involving a method
not part of shared services.

For the transitive case, the previous property must also be verified to guarantee the ab-
sence of illicit control flows, but it is not enough to guarantee the absence of illicit tran-
sitive calls. To simplify the verification of transitive calls, we compute for each A.C.m ∈
Methods the smallest set I(A.C.m) ⊆ Methods of methods that invoke it directly or
indirectly:

I(A.C.m) = Idirect(A.C.m) ∪ I indirect(A.C.m)

with

Idirect(A.C.m) = {A′.C ′.m′ | (A′.C ′.m′, A.C.m) ∈ Messages}

I indirect(A.C.m) =
⋃

A′.C′.m′∈Idirect (A.C.m)

I(A′.C ′.m′)

The absence of illicit control flow property P is verified in a sequence diagram SD =
(Methods,Messages) annotated with « controlflow » stereotype for the transitive case if:

P (SD) : ∀A′.C ′.m′ ∈ Methods,∀A.C.m ∈ I(A′.C ′.m′),

A 6= A′ =⇒ (A′.C ′.m′ ∈ services ∧ ∃(A,A′.C ′,m′) ∈ policy)

The example displayed in Figure 4.2 is not free of illicit control flow if we assume that the
control flow policy is transitive because the debit method of EMV is indirectly called by
the refill method of JTicket, which is not permitted by the control flow policy.

4.1.1.3 Evolution strategy

UML models annotated with the « controlflow » stereotype do not need to be completely
re-checked on each change (addition, deletion or substitution of entities). As part of
UMLsec security extensions, we provide a way to incrementally deal with changes re-
lying on the delta (∆ = (Add,Del,Subs)) between the original sequence diagram SD
and its new version SD[∆], as described in Chapter 3. Addition and deletions are dealt
equivalently by WP6 methods on impacted byte code, as depicted in Chapters of D6.3
and D6.4 related to direct and transitive control flow models. Subsitutions are not ex-
actly considered as is by WP6, but rather considered as two atomic changes: a removal
followed by an addition.
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Addition

• Message: The addition of a message (A.C.m,A′.C ′.m′) in SD just requires verify-
ing that A′.C ′.m′ can be invoked from application A in the non-transitive case for P
to hold

∃(A,A′.C ′.m′) ∈ SD[∆].policy

and that any application that is authorized to call A.C.m is also authorized to call
A′.C ′.m′ in the transitive case for P to hold

∃(A,A′.C ′.m′) ∈ SD[∆].policy∧
∀(B,A.C.m) ∈ SD[∆].policy ∃(B,A′.C ′.m′) ∈ SD[∆].policy

If A 6= A′, then it is also mandatory to check that A′.C ′.m′ is a member of the set
SD[∆].services.

• Tag services: Nothing needs to be verified on the addition of a method in services.

• Tag policy: The addition of a policy rule (A,B.C.m) does not require any re-
verification. If this rule is to be added, it means that it does not appear yet in
the set of policy rules SD.policy, and that B.C.m is never invoked from A directly or
transitively simply because the SD is secure, and therefore clearly remains secure
after this modification is applied.

Deletion

• Message: The removal of a message in the sequence diagram SD cannot make it
insecure, which is clear from the definition of P (SD).

• Tag services: The removal of a service A.C.m in SD.services can be rejected if
there exists a message (A′.C ′.m′, A.C.m) in SD[∆] such that A 6= A′ as it is not
permitted to call a method A.C.m from an application A′ if A.C.m is not a service
shared by A.

• Tag policy: The removal of a policy rule (A,B.C.m) requires to verify that A does
not invoke B.C.m (directly or transitively according to the value of SD[∆].transitive)
but also any method that invoke B.C.m (directly or transitively also) does not permit
to be invoked by A according to the rules in SD[∆].policy. For the non-transitive
case, it means to verify the following statement:

∀A′.C ′.m′ ∈ Idirect(B.C.m), A 6= A′∨ 6 ∃(A,A′.C ′.m′) ∈ SD[∆].policy

And for the transitive case:

∀A′.C ′.m′ ∈ I(B.C.m), A 6= A′∨ 6 ∃(A,A′.C ′.m′) ∈ SD[∆].policy

Substitution

D4.2 Formally founded automated security analysis
version 1.3 | page 87/167



• Message: The substitution of a message (A1.C1.m1, A
′
1.C
′
1.m

′
1) by a message

(A2, C2.m2, A
′
2.C
′
2.m

′
2) cannot be dealt more efficiently that the two atomic modifica-

tions in sequence: remove (A1.C1.m1, A
′
1.C
′
1.m

′
1), and then add

(A2, C2.m2, A
′
2.C
′
2.m

′
2).

• Tag services: The substitution of a service A.C.m by a service A′.C ′.m′ also can-
not be dealt more efficiently than the removal the service A.C.m followed by the
addition of A′.C ′.m′.

• Tag policy: The substitution of a policy rule (A,m) by a policy rule (A′,m′) also
cannot be dealt more efficiently than the removal the service A.C.m followed by the
addition of A′.C ′.m′.

• Tag transitive:

– from yes to no: nothing to verify as all properties verified in the non-transitive
case are also verified in the transitive case;

– from no to yes: this change requires to completely reverify the whole model.

4.1.2 From model to code

A sequence diagram free of illicit control flows contains some information that can be
pushed to code-based verification. These information are inter-method calls expected
described in the model and thus expected to occur in the code. Given the Messages set
of the « controlflow » stereotype, code-base verification can check that expected method
calls occur where expected, ensuring a basic coherency with the corresponding model.

Several situations can occur during verification of expected method calls at the code level:

• A′.C ′.m′ is invoked from A.C.m and (A.C.m,A′.C ′.m′) ∈ Messages, so the code is
coherent with the model;

• A′.C ′.m′ is invoked from A.C.m but (A.C.m,A′.C ′.m′) 6∈ Messages, so the model
is lacking refinement or the code is incorrect;

• A′.C ′.m′ is not invoked from A.C.m while (A.C.m,A′.C ′.m′) ∈ Messages, so the
code is not compliant with the model or incomplete.

To avoid a large number of incoherency occurrences, especially those related to internal
methods not intended to be modeled in sequence diagrams, only the subset Messages
related to calls to shared services (A′.C ′.m′ ∈ services or A 6= A′ in the previous rules)
can be considered.

4.2 Model-based Information-flow analysis

In this section we describe preliminary work for an interaction between model and code-
based verification aimed at detecting unwanted information flows within applications.
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In particular, WP6 uses byte-code static verification techniques for dealing with non-
interference [11]. This verification computes signatures to decide on the presence of
down-flows. We will introduce a novel stereotype extending UMLseCh that performs a
similar static check on UML state-charts and that computes the same signatures. The
general idea of the integration is to compare the outputs (signatures) produced at the
model level with those produced at the code-level, as summarized in Fig. 4.3.

Inputs

signatures
−→
SM signatures

−→
SC

∀m,
−→
SM(m) ⊆

−→
SC(m)

Report

PASS

WP4
« non-interference » Non-interference model

WP6
VerificationVerification

PASSPASS

Methods Methods

UML Secret
attributes bytecode

Java
models

Figure 4.3: General process

4.2.1 Model level

There already exist a stereotype « no down-flow » in UMLsec for deciding whether a state-
chart has down flows with respect to a set of marked attributes [18] (see Figure 4.4). This
stereotype is defined based on a behavioral semantics of state-charts. Currently there
exists no tool support for this security check in the UMLsec Tool Suite. In the following we
want to propose a new stereotype (« non-interference ») whose semantics are inspired in
the statically analysis done at the byte-code level in WP6.

The motivation to extend UMLseCh to include this static analysis of non-interference is
two- fold: on the one hand a statically analysis would be easier to implement than the
behavioral check of « no down-flow »; on the other hand the artifacts used to decide the
presence of flow (“signatures”, see [10] and D6.3) would be common both to the model
and the code level, allowing for a comparison of the verification results on the design level
and on its implementation.

Semantics Intuitively, « non-interference » enforces that a group of state-charts describ-
ing the behavior of a class and its methods has no down-flows from attributes marked with
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rx(): Boolean

money+x
/money:=

Customer account

NoExtraService

Account

ExtraService

«no down−flow»

rm(): Data

wm(x: Data)

rx(): Boolean

rm()/return(money)

rx()/return(true)

rm()/return(money)

rx()/return(false)

[money<1000]

wm(x)
/money:=

money+x

/money:=0
/money:=

money+x

[money>=1000]

wm(x)

{high={wm,rm,money}}

money: Integer

«critical»

rm(): Data

wm(x: Data) wm(x)

Figure 4.4: Example of the current no down-flow stereotype

/return(false)

NoExtraServiceExtraService

/return(true)

[money>=1000]

[money<1000]

Figure 4.5: Explicit behavior of the rx() method

the tag {secret} to other attributes.

To be able to use the existing « no down-flow », method calls are treated as events on a
single state-chart, as depicted in the example in Figure 4.4.

In order to be able to perform a statically analysis similar to the one done at the byte code
level (that is, in order to compute the same signatures) we need the explicit behavior of
each method. That is, we need as many state-charts as methods for each class. For
example, the behavior of the method rx() of Figure 4.4 is depicted on Figure 4.5.

We want to compute signatures of the form:

op,s
f−→ sp,s

where o, p ∈ {R, pi, this} (return value of a method, parameters of a method or local
variables of the class), p, s state for secret or public and f ∈ {i, v, r} is the type of the flow
relation, i for implicit flows, v for value flows and r for reference flows.

The diagram M will have down flows only if there exist a signature of the form:

op
f−→ ss

that is a flow from a public value to a secret value.

The core idea is that those signatures can be computed by statically analyzing the transi-
tions between states. Since we assume that transitions do not contain events, they only
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consist of pairs of the form (G,A) (guard and action). We can then think of them as if
constructs of an imperative programming language of the form if G then A. Given this set
of state-charts for a class (or set of classes) it is possible thus to extract the signatures
as done for the java-code in [9], since at this point it would possible to generate a (very
high-level but complete) code of the application modeled in UML.

Soundness The soundness of the static analysis of non-interference relies on abstract
memory graphs [11] whereas the soundness of the existing « no down-flow » relies on a
more classical input/output process-like definition adapted to the behavioral semantics of
state-charts. At the present time, we conjecture that these definitions are equivalent, and
thus the static analysis at the UML level is sound with respect to the UMLsec behavioral
semantics [19].

4.2.2 Model Level vs. Code Level

Similarly as for « control flow », a set of state-chart diagrams free of down flows can ‘push’
some information to code-based verification. The signatures produced at model-based
verification can be compared with the ones computed during code-based verification. In
general, since the code refines the model, it is expected that the signatures computed for
each method at the code level exceed (or are at least the same) the ones produced at
the model-level. That is, if Model M has

−→
SM signatures and code C has

−→
SC signatures to

check is:

∀ m ∈ Methods(M)
−→
SM (m) ⊆

−→
SC(m)

If this test is not successful for some m, there are two possibilities to be reported:

• The intersection
−→
SM (m) ∩

−→
SC(m) is not empty and

−→
SC(m) ⊂

−→
SM (m). In this case,

the code is lacking some functionality specified in the model, which contradicts the
traditional notion of refinement.

• The intersection
−→
SM (m)∩

−→
SC(m) is strictly contained in both signature sets (it might

be the empty set).In this case the model and the code are incoherent.

Change aspect Although we have not yet analyzed the « non-interference » stereotype
for its behavior under model evolution (as opposed to the « controlflow » case in the pre-
vious section), we believe it will be not difficult to reproduce the techniques developed for
evolving byte code analysis on the model level as done in WP6.

As stated in the introduction of this chapter, once the verification of the changes is done in
parallel one could compare the signatures that actually changed. Suppose we compose
a set of verified applications with new applications (thus we add new elements to model
and code). The changes on the model level are given by a ∆ as follows:

M [∆] = (M ⊗∆)
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The changes on the code level are given by δ:

C[δ] = (C ⊗ δ)

Since we are adding new applications, we can safely assume:

Class(M) ∩ Class(∆) = Class(C) ∩ Class(δ) = ∅.

We are interested in the signatures that actually changed, so let
−→
S′M and

−→
S′C the new

signatures on the model resp. code-level:

M [∆]⇒
−→
S′M , C[δ]⇒

−→
S′C

Our assumption was:

∀ m ∈ Methods(M)
−→
SM (m) ⊆

−→
SC(m)

Then it follows:

∀ m ∈ Methods(M)
−→
S′M (m) ⊆

−→
S′C(m)

since the signatures for the pre-existing methods remain unmodified.

To check is only:

∀ m ∈ Methods(∆)
−→
S′M (m) ⊆

−→
S′C(m).
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5 Model-based Testing and Model-based
Verification

We describe in this chapter the connection between Work Package 4 (model verification)
and WP7 (model-based testing). Based on the Global Platform life-cycle (POPS), this
link shows how model-based testing for evolving systems can benefit from the techniques
developed in WP4. The general requirement considered is ‘Specification Evolution’ and
the common property is ‘Life-cycle consistency ’ [50]. From a methodological point of
view the two approaches are complementary, and address a good practice of software
engineering: in order to build relevant model based tests, it is mandatory to count on a
correct model in the first place.

Typically the models verified against security properties (using for example the UMLsec
profile) are explicit models of the system design, whereas model-based testing is based
on models describing the expected behaviour of an application, seen thus as a black-
box. The contribution of this common work is the application of the model verification
techniques of security properties to the models used in the testing domain, both with and
without evolution. With these results the testing engineers can ensure they use a correct
model with respect to the security properties they are interested in. The integration is
based on the POPS case study on the change requirement “Specification Evolution” and
the “Information protection” property of the Global Platform (see [50]).

This chapter is organized as follows. We first introduce the general process of coupling
model-based testing and model verification in Section 5.1. We then present how the
integration works at the levels of security (5.2) and evolution (5.3).
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Figure 5.1: WP4 and WP7 approaches without integration

5.1 General process

In the context of the SecureChange project, the WP7 aims at providing a means for
taking into account the evolutions and the security in the software validation process. To
achieve that, WP7 proposes two solutions to address these issues. First, a dedicated test
generation process, based on user-defined test scenarios, is defined. Second, a special
process based on an differential analysis of models makes it possible to focus the test
generation effort on a subset of the software without sacrifice the overall validation of the
whole software.

Regarding WP4 and WP7 contributions to the project, before integration, the respectives
processes can be summarized as depicted in Fig. 5.1.

The initial and modified specifications are used independently by the two engineers. On
the WP4 side, the system engineer designs a conception model used for system design.
He includes the security properties, that can be checked on the model, using the UMLsec
approach. During the system’s life time, he updates the design with a set of changes to be
applied on the model, and the UMLseCh process checks that the evolutions preserve the
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Figure 5.2: WP4 and WP7 integration

security properties. On the WP7 side, the validation engineer designs a test model, and
writes test scenarios that are used to produce test cases exercising security properties.
Notice that the security properties considered for testing are expressed at a different
abstraction level w.r.t. the properties that are verified by UMLsec. When an evolution
occurs, he propagates these evolutions to the test model, that is used in the SetGam
method (WP7 contribution to SecureChange), along with the original model and the tests
that were produced from that model. Notice that the SetGam method starts by computing
the differences between the two models.

Our integration proposal is as follows. It relies on the complementarity of verification and
testing approaches. Namely, the model that is used for test generation has to be validated
regarding the security properties that are considered. If not, the model may authorize an
incorrect behavior, and, more importantly, the tests that will be produced will expect the
System Under Test to present the same behavior as the model. As a consequence,
a faulty implementation would be considered as correct (regarding the execution of the
tests), and a correct implementation would be declared as faulty. It is thus mandatory to
ensure that the test model respects the security properties on which the tests are based.

The collaboration between WP4 and WP7 is summarized in Fig. 5.2. First, a validation
engineer designs a test model and some properties (step 1). He uses the UMLsec ap-
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proach (step 2) to validate the model against the security properties, so as to make sure
that the model respects the considered properties. Once the model is declared correct, it
can be used to produce test cases exercising the properties (step 3). When an evolution
occurs, the evolutions are described as the set of changes between the two model ver-
sions (step 4). The UMLseCh process is then in charge of validating the evolutions w.r.t.
the security properties (step 5). Once the preservation of the security properties by the
evolutions is ensured, the set of evolutions is used to automatically compute the evolved
version of the test model (step 6). The SetGam process can then be applied to produce
test cases validating the evolutions w.r.t. the security properties.

The outcome of the integration is the following:

• WP4 enhances its verification activities not only to conception models, but also to
test models, and the kind of properties that are verified on the model. In addition,
both approaches are now used by the same actor (the validation engineer).

• WP7 benefits from the already existing computation of the differences that is helpful
at two levels: (i) it makes it possible to automatically compute the new version of
the model, and (ii) it avoids computing the model differences at the beginning of
the SetGam process.

• The complementarity between verification and testing is clearly shown.

We now present in the following sections how integration is concretely done.

5.2 Security

In this section we show how the security Model-Based Testing (MBT) process benefits
from model verification (see 3). We first recall the considered test generation process
and then show the proposed verification approach based on the case study. In particular,
we consider the following two properties:

Property 1 “For any execution, whenever the card is put in the TERMINATED state
by means of a set status issued by a privileged application, then it should not be
possible to revert to another state”

Property 2 “It should not be possible for an application that doesn’t have the Card
Terminate privilege to switch the card life cycle state to Terminated, whether via a
SET STATUS command (if the application is a SD) or the invocation to the GPSys-
tem.terminateCard() method”

5.2.1 Background of Test Generation Process

As explained previously, our test generation process aims at generating model-based
tests. These test cases are thus computed by animating the model, i.e. by simulating its
execution through its formal description.
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SCHEME ::= (QUANTIFIER_LIST ,)+ SEQ
QUANTIFIER_LIST ::= QUANTIFIER (, QUANTIFIER)∗

QUANTIFIER ::= for_each VAR_DECL from ( BEHAVIOR_CHOICE
| OP_CHOICE )

VAR_DECL ::= $variable name
BEHAVIOR_CHOICE ::= any_behaviour_to_cover

| any_behavior_to_cover_but BEHAVIOR_LIST
BEHAVIOR_LIST ::= BEHAVIOR (or BEHAVIOR)∗

BEHAVIOR ::= behavior_activating TAG_LIST
| behavior_not_activating TAG_LIST

TAG_LIST ::= { TAG (, TAG)∗ }
TAG ::= REQ: tag name | AIM: tag name

OP_CHOICE ::= any_operation | OP_LIST
| any_operation_but OP_LIST

OP_LIST ::= OPERATION (or OPERATION)∗
OPERATION ::= operation name

SEQ ::= BLOC (then BLOC)∗
BLOC ::= use CONTROL (RESTRICTION)+ (TARGET)+

CONTROL ::= OP_CHOICE | BEHAVIOR_CHOICE | VAR
VAR ::= $variable name

RESTRICTION ::= at_least_once | any_number_of_times
TARGET ::= to_reach STATE

| to_activate BEHAVIOR
| to_activate VAR

STATE ::= state_representing ocl constraint
on_instance instance name

Figure 5.3: Syntax of the TestDesigner scenarios language

In order to build security-based test cases, we rely on the use dedicated test scenarios
that describe either nominal test cases, aiming at illustrating the considered property (i.e.
the preservation of secrecy, the denial of an access to a specific security asset, etc.), or
aiming at checking the robustness of the system towards security.

To describe scenarios, a dedicated scenario language has been implemented as a plug-
in of TestDesigner, version 4.1.2. The syntax of the scenario language is given in Fig. 5.3.

Roughly speaking, the language makes it possible to design test scenarios as a sequence
of steps, each step being composed of a set of operations (possibly iterated at least once,
or many times) and aiming at reaching a given target (a specific state, the activation of a
given operation, etc.).

Example 1 (Scenario example). Consider an example from the GlobalPlatform case
study. One wants to test a security property of access control specifying that when the
card is put in the terminated state by means of a privileged application, then it should not
be possible to revert to another state.

A test scenario exercising this property would act as follows. First, it selects an application
that has the appropriate privileges (i.e. those required to change the status of the card).
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Card_Locked Terminated

Card Life−cycle

T1

{status=Terminated}

«locked−status»

Figure 5.4: Fragment of the card life-cycle

Then, it applies the dedicated operation that sets the card state to terminated. Finally, it
ensures that the card status can not be changed by checking if all operation activations
possibly lead to a change of state.

for_each $X from any_operation
use any_operation any_number_of_times
to_reach state_representing selectedApp.privileges.cardTerminatePriv=TRUE
on_instance sut then
use setStatus at_least_once
to_reach state_representing cardState = TERMINATED on_instance sut then
use any_behavior_to_cover
at_least_once to_activate $X then
use getStatus at_least_once to_activate behavior_activating {@AIM: SUCCESS}

5.2.2 Correctness verification

In order to check whether the model used for the test generation is correct in the first
place, one could use the stereotypes defined for UMLseCh in Section 3.2. We recall here
briefly the definition:

« locked-status » together with the tag {status} applied to a state-chart diagram checks
whether there are any transitions going out of the status matching the identifier contained
in the {status} tag. If there are, the check fails, otherwise it passes. This corresponds to
Property 1.

For example, in Figure 5.4, one can statically check for a fragment of the Card-life cycle
that there are not outgoing transitions from the Terminated status to any other status.
This corresponds to the Example 1 of the previous subsection.

« authorized-status » together with tags {status} and {permission} checks whether the sta-
tus specified in {status} is reachable by a path not containing a permission as specified
in {permission} in the last transition (by parsing the guards associated to the transitions).
This enforces Property 2.
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Figure 5.5: The SetGam process

In case any of these two checks fails in the Models used for testing generation, the prop-
erties the testing engineer wants to check on the system would be obviously wrong from
the beginning, since the expected behavior of the system would be contradicting the
properties.

5.3 Evolution

The second integration point concerns the evolutions of the model. The UMLseCh ap-
proach considers a set of possible evolutions for which the preservation of security prop-
erties has to be ensured.

5.3.1 Test Generation Process under Evolution

The test generation process regarding evolutions is as follows. It takes as input two
formal models, one representing the system before evolution and another representing
the same system after the evolution took place. It also considers a set of test cases
applicable/computed from the original model.
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The WP7 process, called SetGaM, is depicted in Fig. 5.5. It starts by a dependency anal-
ysis of the original and the evolved model. This dependency analysis aims at identifying
data and control dependences inside the model (1). Then, the models statecharts are
compared (2) to identify the changes between them and their impact w.r.t. the existing
test suite (3). Then test cases from the original test suite are classified (4), with the help
of model animation (5), so as to identify:

• outdated tests, that are no longer relevant w.r.t. the new version of the software (to
be used for stagnation testing)

• unimpacted tests, that do not cover evolved parts of the system/requirements and
are thus still relevant w.r.t. the new version (to be used for regression testing)

• updated tests, that are an updated version of an existing test case for which the
oracle had to be re-computed (to be used for evolution testing).

• adapted tests, that cover already existing part but because of the evolution they
failed, and for which we need to recompute the test sequence.

• re-executed tests, that cover evolved parts of the system/requirements and need to
be recomputed (to be used for evolution testing) (6)

• new tests, that have to be computed for new parts of the software that did not exist
before (7).

5.3.2 Benefiting from the UMLseCh approach

For the stereotypes « locked-status » and « authorized-status », a sound decision proce-
dure for evolving state-chart diagrams has been described in Section 3.2 of this Deliver-
able. One could therefore check whether the evolution depicted in the example in Figure
5.6 respects « locked-status ». In this example a new transition (T2) is added to the Status
Card_Locked, and the Guard of transition T1 is substituted with a new guard.

This way the testing engineer can model expected evolutions in the testing model and
testing for correctness of the evolved models without re-running the verification from
scratch and thus benefiting from the WP4 methodology.

Moreover, one can further exploit the UMLseCh notation to compute the delta between a
model and its evolution, and give it as an input to the WP7 testing generation methodol-
ogy. On one hand, WP7 evolution testing approach considers two models and computes
their differences. On the other hand, UMLseCh can return a set of possible evolutions for
a considered model.

Thus, our integration work consists at this level consists in:

• working on a common study, which is the Global Platform Life Cycle scope

• using UMLseCh to specify one evolution of the model (a ∆ between the original and
evolved model depicted in Fig. 5.5).

• export this evolution into an XML file to provide it as an input for the WP7 process.
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Card_Locked Terminated

New−transition

Card Life−cycle

«add»

Card_Locked Terminated

«substitute»

T1

T2

{substitute=SubsGuard}
{pattern=T1.Guard}

{add=New−transition}

{status=Terminated}

«locked−status»

Figure 5.6: An evolving fragment of the card life cycle model

UMLseCh can send a set of possible evolutions for a given model:

• the addition of a new model entity (class, state, etc.)

• the deletion of an existing model entity

• the substitution of one model entity by another new one.

These additions, deletions and substitutions are specified in dedicated stereotypes in the
corresponding UML diagram: add, del and substitute/substitute-all. Thus, for our case
study scope with respect to the defined security properties in 5.2 and the evolution, the
UMLSeCh model is defined as depicted on the figure 5.6.

Notice that the two approaches consider models that are designed using different UML
modeling tools (ArgoUML for UMLseCh vs. IBM Rational Software Architect for TestDe-
signer). The switching from one of the notations to the other is not considered, since
such activity is highly time-consuming and would not respond to a concrete need for in-
tegration. Thus, our integration solution has to be the less invasive as possible in terms
of adaptation of the existing tools. That is why we have decided to create a common
XML exchange file, containing the information about each statechart evolution (Addition,
Deletion, Substitution).

Addition: We have created the XML marker <add> to present addition of a transition.
As described at the File 1 we can specify its the name, the source, the target, the event,
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File 1: <add>,<del>,<sub> XML markers

<add>
<element type= ’ t r a n s i t i o n ’ name= ’ t1 ’>

<event name= ’ e ’ / >
<source name= ’S1 ’ / >
< t a r g e t name= ’ s2 ’ / >
<guard> oc l code . . . < / guard>
<ac t i on > oc l code . . . < / ac t i on >

< / element>
<element> . . . < / element>

< / add>
<del>

<element type= ’ t r a n s i t i o n ’ name= ’ t2 ’ / >
<element> . . . < / element>

< / de l>
<sub−a l l >

<sub type= ’ t r a n s i t i o n ’ name= ’ t1 ’>
< t a r g e t > Ty < / t a r g e t >
<guard> G2 < / guard>

< / sub>
. . .

< / sub−a l l >

the action and the guard.

Deletion: The XML marker <del> represents the deletion of a transition. As depicted in
the File 1 we put the set of elements that are deleted w.r.t the evolution.

Substitution: Finally, all smallest substitutions (XML marker <sub>) are gathered as
a set of substitutions (marker <sub-all>). To simplify the process of substitution for the
engineer, we give the name of the concerned transition, than we give the element that
is changed: source, target, event, guard or action of the transition, and the information
about what to substitute. As given in the example 1, the concerned transition is t3 and
we need to make a substitution of the guard G2 and the transition’s target Ty.

With these XML marks we are able to create the XML exchange file and we can easy note
the additions, deletions and substitutions in a statechart. In the Appendix 5.4 you can
find the file corresponding to the Global Platform scope results of the applied approach.
Moreover, you have an example of addition of the transition setStatus and substitution of
the guard of the transition setStatus.

Thus, having ∆ it will be possible for WP7 to:

• build the new model resulting from the described evolution,
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• avoid computing the difference between the models, since it will be directly provided
by ∆,

• apply the rest of the methodology without any interference.
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5.4 The GP Life-Cycle

Until now we have shown an example of a state-chart inspired in the GP Life-Cyle. In this
section we present a fragment of the delta XMI for the actual Model of the GP Application
in Listing 2. This delta represents the change from the life-cycle model for testing done by
WP7 for Versions 2.1 and 2.2 of the GP, a fragment of which are represented in Figures
5.7 and 5.8.

Figure 5.7: Fragment of the life-cycle in V2.1 of the GP

Figure 5.8: A new transition is introduced between Card_Locked and Terminated in V2.2 of the GP

D4.2 Formally founded automated security analysis
version 1.3 | page 104/167



File 2: delta xml exchange file for GlobalPlatform sub-scope

<add>
<element type= ’ t r a n s i t i o n ’

name= ’ setStatusCardLockedToTerminated_pr iv i legedApp ’>
<event name= ’ APDU_setStatus ’ / >
<source name= ’ Card_Locked ’ / >
< t a r g e t name= ’ Terminated ’ / >
<guard>

s e l f . l cs−>e x i s t s ( l c : LogicalChannel |
. . .
l c . selectedApp . p r i v i l e g e s . cardTerminate = t rue and
l c . selectedApp . p r i v i l e g e s . secur i tyDomain = f a l s e
)

. . .
< / guard>
<ac t i on >
. . .
s e l f . lastStatusWord = ALL_STATUS_WORDS::SUCCESS
/∗∗@AIM: FROM_CARD_LOCKED ∗ /
/∗∗@REQ: APDU_SETSTATUS_SUCCESS_APP_CARD_LOCKED_TO_TERMINATED ∗ /
< / ac t i on >
< / element>

< / add>
<sub−a l l >

<sub type= ’ t r a n s i t i o n ’
name= ’ setStatusCardLockedToTerminated_priv i legedSD ’>

<guard>
s e l f . l cs−>e x i s t s ( l c : LogicalChannel |
. . .
l c . selectedApp . p r i v i l e g e s . cardTerminate = t rue and
l c . selectedApp . p r i v i l e g e s . secur i tyDomain = t rue

)
. . .

< / guard>
< / sub>

< / sub−a l l >
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6 Integration of Thales Security DSML with
UMLseCh and application to the ATM Use
Case

This chapter contains the integration link presenting a connection between the modeling
and verification techniques developed by WP4 with WP3 (Requirements) based on the
ATM Case Study. A risk analysis done with the Thales Security DSML gives high-level
security requirements, which are reflected in the System Design and analyzed by means
of the UMLseCh approach. The general requirement considered is ‘Organizational Level
Change’ and the properties considered are ‘Information Access’ and ‘Information Pro-
tection’ [50]. Both Security DSML and UMLseCh provide a Domain Specific Modelling
Language that captures security concepts and enables to annotate a model design.

Security DSML, developed at Thales after EU-FP6 Modelplex project shall be regarded
as a security viewpoint of a system model design tool in the sense where viewpoint
is intended as a technology to provide non functional properties tooling integrated to a
system engineering workbench. This technology is the focus on French research project
Movida (ANR – Call 8). In the last progress of the work for Secure Change project,
Security DSML has been integrated as a security viewpoint above model design tool
Papyrus UML. Security DSML focuses on a risk management process at system design
phase.

UMLseCh, developed within Secure Change under the lead of TUD, is a formal verifica-
tion tool that permits to validate formally security properties of a design model.

The example developed below shows how the two tools can enrich a system design
process by providing argumentation for the security design of the system. The second
section explains the overall process and terminologies used in the two tools.

The third section describes the ATM use case scenario at Organisational Level Change
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by the introduction of the Arrival Manager (AMAN) and the Sequence Manager (SQM).

The fourth section shows how Security DSML is used to study the security risks of a
design model and how this risk management process produces security requirements as
output.

The fifth section shows how the security requirements produced by means of the Security
DSML can be captured in UMLseCh formal language and used to validate the consistency
of the system model with the new requirements.

Security DSML and UMLseCh demonstration overall process and terminolo-
gies

Starting from a model design, Security DSML enables to conduct a risk analysis. The
risk management phase following it produces Security Objectives, which are in their turn
refined in Security Requirements. These security requirements lead to an evolution of
the model since security solutions shall be implemented to complete or transform the
model. This is how security engineering and security evolution as studied through Secure
Change project shall improve Thales system engineering methodology.

After having proceeded to model evolution thanks to a security analysis study with Secu-
rity DSML tools, UMLseCh tooling provides a nice-to-have tool to validate model consis-
tency with some of the security requirements produced as output of the security analysis.
The purpose of UMLseCh indeed is the validation of security properties of activity di-
agrams. Actually, some Security Objectives and Security Requirements correspond to
security properties that can be expressed using UMLseCh annotations.

In figure 6.1, in the first step, the system architect starts modelling the business architec-
ture or processes.

The risk manager, in the second step, gets the model started by the System Architect,
and analyses the risks at business and service level. He updates the risk model which
annotates the system model. In order to cover the risks, he defines new security objec-
tives and security requirements, and propagates these requirements to the requirements
models.

In the third step, the requirements engineer then gets the requirements, and assesses
them.

Once the requirements are accepted, the System Engineer, in the fourth step, translates
them into solutions, and models the Logical architecture and the Physical architecture.

As the system engineer, the security engineer, in the fifth step, translates the security
requirements into solutions, and changes the Logical architecture and the Physical archi-
tecture in order to show the security measures to be implemented.

The sixth step is the verification by the UMLseCh tool, of the consistency of the model.

In the seventh step, the system architect proceeds to the overall mitigation and assess-
ment of the system model.

In the example described below, both tools start with similar activity diagrams of a pro-
cess. The use case focuses on Role Base Access Control specification. This detailed
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Figure 6.1

requirement can be expressed with both languages. Role Base Access Control rules ex-
pressed as Security Requirements with Security DSML can be captured with UMLseCh
formal notation, and thus validated towards the activity diagram. In that way, UMLseCh
enables consistency checking validates the output of some of the security requirements
expressed by means of Security DSML.

Figure 6.2 presents a more complete mapping between the types of concepts used in
both languages.

The first column at the right shows UMLseCh stereotypes. The second column is used
to describe eventual UMLseCh tags.

The following columns to the rights indicate to which Security DSML concepts they corre-
spond. The third column refers to Thales segmentation of its security model. The fourth
column shows to which Security DSML concept or meta-class the UMLseCh stereotype
or tag corresponds. A fifth column is needed to note which instance of Security DSML
concept the UMLseCh stereotype or tag corresponds. As often the semantic for a secu-
rity concept in UMLseCh is not the same in Security DSML (a same word does not mean
the same with regard to UMLseCh or with regard to Security DSML default ontology, we
proposed to create new concepts in Security DSML as referring to UMLseCh ones. A
comment explicates this in the last column.

6.1 ATM use case scenario at Organizational Level
Change

The purpose of the following sections is to present a change scenario and demonstrate
how UMLseCh and Thales’ security DSML can be leveraged to implement it in a secure
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Figure 6.2: Mapping between UMLseCh and Thales Security DSML.
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way. This section describes the organizational change of the ATM use case, namely
the introduction of an Arrival Manager, from a role-based access control angle. Sec-
tion 6.2 realizes a risk management process of the change in the Thales environment,
while Section 6.3 explains how UMLseCh can be used to validate the results of the risk
management process. This approach can contribute to the design of an Arrival Manager
secure interface for the different Air Traffic Controllers (ATCOs) roles in an ACC.

The Arrival MANager (AMAN) is an aircraft arrival sequencing tool helping to manage
and better organize the air traffic flow in the approach phase.

Arrival Management is a very complex process, involving different actors. A high level
description of the Arrival Management process could be:

• Setting Goals (e.g. maximum usage of runway capacity, minimizing noise or fuel
consumption).

• Creating a plan to meet the goals.

• Monitoring the conformance to the plan.

• Adjusting/updating the plan if necessary.

Before the introduction of the AMAN, the sequence creation and adjustment was carried
out by the Sector Team, in particular by the Tactical Controller with the Planner Controller
support. The main functionalities of the AMAN are

• The creation of an arrival sequence using ‘ad hoc’ criteria.

• The management and modification of the proposed sequence.

• The provision of data to the HMI to allow controllers to implement the proposed
sequence.

• The support of runway allocation at airports with multiple runway configurations.

• The generation of advisories on: (1) Time to lose or gain, (2) Speed, (3) Top-of-
descent, (4) Track extension, holding.

The computation of the sequence is carried out no more by the ATCOs, but by the AMAN
tool itself. Moreover, a new role in the ACC has been introduced: the Sequence Manager
(SEQ MAN), that will monitor and modify the sequences generated by the AMAN and will
provide information and updates to the Sectors’ Teams. After AMAN introduction, ATCOs
have different privileges according to their role. For example, the Sequence Manager
can modify the sequence of arrivals provided by the AMAN, while the Tactical (TCC)
and Planner (PLC) can only view it. Thus, the AMAN tool needs different functionalities
and subsequent access rules for different ATCOs roles. ATM Engineers customizing the
AMAN for an ACC have the problem to design suitable Role-Based Access Control and
Users Interfaces for the AMAN tool.

Those roles and activities can be presented in a semi-formal way in the form of a UML
activity diagram. Figure 6.3a presents the roles of the PLC and the TCC before the
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(b) New roles

Figure 6.3: Roles and activities.

introduction of the AMAN. Figure 6.3b presents the new roles of the SEQ MAN and the
AMAN. Crucial activities such as ‘Compute the sequence’ and ‘Modify the sequence’
have been reassigned. Our study will concentrate on the task of maintaining a secure
role-based access control for them.

6.2 Risk Management with Security DSML

The purpose of this step is to perform a security Risk Management study on a system
model related to the ATM use case described above.

System Model tool Papyrus UML is used to model the system. Here, the focus is put on
the computation of the aircraft (A/C) sequence and its modification.

The overall methodology used can be summarized with the following process (see fig-
ure 6.4):

1. A risk analysis is made on a design model, which leads to a Risk change request.

2. Security Objectives and Requirements are defined in order to cover the risks.

3. Since Requirements concern the introduction of the AMAN, a Design change re-
quest is performed in order to introduce the two new roles and their respective
activities.

The first sub-section describes the activities modelled with Papyrus, the second sub-
section show the step of the risk analysis, the third sub-section indicates the need for
a change in the process. Section 6.3 shows how UMLseCh can prove that the Design
Change Requests proposed were incomplete, which leads to additional Design Change
Request.
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Figure 6.4: Overall Thales process.

6.2.1 Activities modelling with Papyrus

Activity diagrams are used under Papyrus to describe the activities of the ATM scenario
accomplished by different roles of Air Traffic Controllers such as Tactical Controller (TCC),
Planning Controller (PLC).

After the introduction of the Arrival Manager (AMAN) automatic computation engine, two
roles are added, the AMAN and the Sequence Manager (SQM).

Before the introduction of the AMAN, the activities are the following:

• PLC monitors the traffic:

PLC monitors traffic on his/her Controller Working Position.

• PLC detects the need for a change in Sequence:

by means of the sub-activities performed in parallel such as:

– Read Radar Tracks
– Read A/C Data
– Apply Separation Criteria1

PLC detects the need for a change in Sequence.

• PLC asks for a Sequence Modification:

After having detected the need for a change in the Sequence, PLC asks TCC for a
Sequence modification.

• TCC computes the Sequence:

by means of the sub-activities performed in parallel such as:
1Separation criteria shall be applied by Air Traffic Controllers in order to guaranty a safe separation of the

aircraft in a sequence of arrivals.
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– Read Radar Tracks

– Read A/C Data

– Apply Separation Criteria1

TCC computes the aircraft sequence.

• TCC modifies the Sequence:

by means of the sub-activities performed in parallel such as:

– Read Radar Tracks

– Read A/C Data

– Apply Separation Criteria

TCC modifies the aircraft sequence.

6.2.2 Risk analysis performed with Security DSML

The overall process for the risk analysis is summarized in figure 6.5.

The activities performed are:

• Identifying essential elements, aka identifying the perimeter of the study

• Analysis of the damages

• Determination of the targets

• Determination of the vulnerabilities

• Analysis of the threats

• Definition of the risks

• Definition of the confinement zones

• Definition of the Security Objectives

• Definition of the Security Requirements

6.2.2.1 Perimeter of the study / Identify Essential elements

The Security DSML is used over Papyrus design tool in order to perform a risk analysis.
The perimeter considered for the risk analysis consists of the activity diagrams drawn
with Papyrus.

The activities considered are the following:

• PLC monitors the traffic

• PLC detects a need for a change in the Sequence
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Figure 6.5: Overall risk analysis process.
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• PLC asks for a Sequence modification

• TCC computes the Sequence

• TCC modifies the Sequence

The risk analysis performed with WP5 with the domain experts from Deep Blue provides
relevant inputs to analyse these activities.

6.2.2.2 Analysis of the Damages

A list of possible damages is identified in relation with the activities above, with an impact
level. For each damage of the list below, the impacted activities are indicated.

• Loss of information provisioning to/from ATCOs: Critical

– TCC computes the Sequence

• Failure in the provisioning of correct arrival information: High

– TCC modifies the Sequence

• Failure in the provisioning of optimal arrival information: Medium

– PLC detects a need for a change in the Sequence

– PLC asks for a Sequence modification

– TCC computes the Sequence

– TCC modifies the Sequence

6.2.2.3 Determination of the targets

The targets are the activities.

6.2.2.4 Determination of the Vulnerabilities

Vulnerabilities identified on the different actors and activities are the following. For each
vulnerability of the list below, the related activities are indicated.

• High coordination workload

– PLC detects a need for a change in the Sequence

– TCC computes the Sequence

• Non-compliance of ATCO with procedures

– PLC detects a need for a change in the Sequence

– TCC computes the Sequence
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• Stress, concentration problems, health conditions, etc.

– TCC computes the Sequence

• Lack of routines for avoiding multitasking

– TCC computes the Sequence

• Overload of traffic; high workload

– TCC modifies the Sequence

6.2.2.5 Analysis of the Threats

Threats are listed below with a probability level. For each threat, the related activities are
indicated.

• ATCO mistake: High

– PLC detects a need for a change in the Sequence

– TCC computes the Sequence

• Non-compliance of ATCO with procedures: Low

– PLC detects a need for a change in the Sequence

– TCC computes the Sequence

• TCC unavailability: Low

– TCC computes the Sequence

• TCC overloaded: High

– TCC computes the Sequence

• ATCO fails to manually update the system: Medium

– TCC modifies the Sequence

6.2.2.6 Definition of the Risks

The following risks are identified, with Severity and Opportunity and overall risk level. For
each risk, the activity, vulnerability and threat are indicated.

B17 Failure in the provisioning of correct or optimal arrival information (stabiliza-
tion or coordination of sequence) due to ATCO mistakes

– Severity: High, Opportunity: High, overall risk level: High
– Activity 1: PLC detects a need for a change in the Sequence; Damage 1:

Failure in the provisioning of correct or optimal arrival information; Vulnerability
1: High coordination workload ; Threat 1: ATCO mistake

D4.2 Formally founded automated security analysis
version 1.3 | page 116/167



– Activity 2: TCC computes the Sequence; Damage 2: Failure in the provisioning
of correct or optimal arrival information ; Vulnerability 2: High coordination
workload ; Threat 2: ATCO mistake

B16 Failure in the provisioning of correct or optimal arrival information due to
non-compliance of ATCO with procedures

– Severity: High , Opportunity: Low, overall risk level: Medium

– Activity 1: PLC detects a need for a change in the Sequence; Damage 1:
Failure in the provisioning of correct or optimal arrival information; Vulnerability
1: Non-compliance of ATCO with procedures; Threat 1: Non-compliance of
ATCO with procedures

– Activity 2: TCC computes the Sequence ; Damage 2: Failure in the provision-
ing of correct or optimal arrival information; Vulnerability 2: Non-compliance of
ATCO with procedures; Threat 2: Non-compliance of ATCO with procedures

B13 Tactical Controller (TCC) becomes unavailable during arrival management
process due to his/her physical/mental condition

– Severity: Critical , Opportunity: Low, overall risk level: High

– Activity: TCC computes the Sequence; Damage: Loss of information provi-
sioning to/from ATCOs; Vulnerability: Stress, concentration problems, health
conditions, etc.; Threat: TCC unavailability

A12 TCC fails to provide arrival information to all relevant recipients simultane-
ously due to communication overload (radio with A/C, voice with PLC)

– Severity: Critical , Opportunity: High, overall risk level: Critical

– Activity TCC computes the Sequence; Damage: Loss of information provision-
ing to/from ATCOs; Vulnerability: Lack of routines for avoiding multitasking;
Threat: TCC overload

B18 ATCO fails to manually update the system which leads to the provisioning of
inconsistent data

– Severity: Medium, Opportunity: Medium, overall risk level: Medium

– Activity: TCC modifies the Sequence; Damage: Failure in the provisioning
of correct arrival information; Vulnerability: Overload of traffic; high workload;
Threat: ATCO fails to manually update the system

The definition of these new risks implies the emission of a Risk Change
Request for these risks to be considered in the secure engineering process.
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6.2.2.7 Definition of the confinement zone

In the context of this risk analysis performed over activities of a process, this activity
corresponds into deciding what level of risk is considered as unacceptable and therefore
the type of risk management shall be put in place.

In the domain of Air traffic control, risks with risk level from critical to medium shall be
managed.

6.2.2.8 Definition of the Security Objectives

According to the risk analysis performed within WP5, a list of security objectives was
listed as requirements from the domain experts.

• ATM_SEC_1: The system shall maintain consistency between data and presented
information.

• ATM_SEC_2: The system shall be equipped with suitable security mechanisms to
prevent from corruption of data.

• ATM_SEC_3: The system shall be equipped with suitable security mechanisms to
prevent from accidental loss of data.

• ATM_SEC_4: The system shall be equipped with suitable security mechanisms to
prevent from intentional loss of data.

• ATM_SEC_5: The system shall guarantee the integrity and confidentiality of data
against illicit attempt to obtain access to such data.

In order to cover the risks defined through the Risk analysis process, the following addi-
tional Security Objectives are defined. For each Security Objective, the related risks are
indicated:

O1 The Sequence shall be computed automatically by an Arrival Manager system.

B17 Failure in the provisioning of correct or optimal arrival information (stabilization
or coordination of sequence) due to ATCO mistakes

B16 Failure in the provisioning of correct or optimal arrival information due to non-
compliance of ATCO with procedures

B13 Tactical Controller (TCC) becomes unavailable during arrival management pro-
cess due to his/her physical/mental condition

A12 TCC fails to provide arrival information to all relevant recipients simultaneously
due to communication overload (radio with A/C, voice with PLC)

O2 The update of the system should be handled through a dedicated role of Sequence
Manager.

B17 Failure in the provisioning of correct or optimal arrival information (stabilization
or coordination of sequence) due to ATCO mistakes
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B18 ATCO fails to manually update the system which leads to the provisioning of
inconsistent data

All the risks are covered by at least one security objective.

6.2.2.9 Definition of the Security Requirements

The following security requirements are defined in order to refine the security related
objectives as indicated.

• Req01: Access Rights to AMAN on Computing the Sequence

O1 The Sequence shall be computed automatically by an Arrival Manager system

• Req02: Access Rights to SQM on Monitoring the Sequence

O2 The update of the system should be handled through a dedicated role of Se-
quence Manager

The definition of these new security requirements implies the emission of a
Requirements Change Request for these requirements to be taken into

account in the security engineering process.

This is the end of the risk analysis.

6.2.3 Requirements lead to a change in the design

The previous risk analysis process leads to a requirement change request which contains
two requirements:

• Req01: Access Rights to AMAN on Computing the Sequence

• Req02: Access Rights to SQM on Monitoring the Sequence

In order to cover these two requirements, a Design Change Request shall be emitted.
The following two activities shall be

• Modify the Sequence by the SQM: This activity replaces the modification of the
sequence by TCC described above by the same activity handled by the dedicated
role of the Sequence Manager.

• Compute the Sequence by AMAN: This activity replaces the computation of the
sequence by TCC described above by an automatic process performed by the
AMAN.
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6.2.4 Introduction to next step

The following section describes how UMLseCh tool is used to verify the new version of
the design model. We will see that the Design change request proposed in the previous
section is not sufficient to lead to a consistent status, with regards to all the Security
requirements, especially

• ATM_SEC_4: The system shall be equipped with suitable security mechanisms to
prevent from intentional loss of data.

• ATM_SEC_5: The system shall guarantee the integrity and confidentiality of data
against illicit attempt to obtain access to such data.

and with regards with the new Role Based Access Control rules established in order to
guaranty Req1 and Req2.

6.3 Model consistency with UMLseCh

The previous section illustrates the process of deriving security requirements through a
risk analysis to guarantee security objectives. Although backed up by standard method-
ologies which include provisions for ensuring that risks are covered by requirements, such
an analysis remains non formal and lacks a measure of completeness. Specifically, the
process may fail

• if some risks are not identified by the analyst,

• or if the set of requirements fails to cover the risks with respect to the security
objectives,

• or if the requirements are not fully implemented in the system under consideration.

There are no generic ways to tackle those shortcomings, but in specific cases other meth-
ods may complement the risk analysis by providing a means to verify its completeness, as
seen in figure 6.6. This point is illustrated in this section through the use of the role-based
access control facilities of UMLseCh.

UMLsec includes an « rbac » stereotype of subsystems that contain an activity diagram.
It formalizes role-based access control through the marking of some activities as pro-
tected, the assignment of roles to actors and of protected activities to roles. This is done
with the tags {protected}, {role}, and {right} respectively. The semantics specify that every
protected activity may only appear in the swim-lane of an actor with a role equipped with
the right to perform the activity. For the sake of simplicity, we omit roles in this presen-
tation and assign protected activities to actors directly. Such an additional indirection is
unnecessary in the simple case presented here.

The simple scenario presented in this section consists of the following steps:

1. The introduction of the AMAN is implemented as a modification of the activity dia-
gram presented before, as specified by the Design Change Request described in
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Figure 6.6: Integration between the Thales security engineering and UMLsec.

the previous section. From the point of view of UMLsec, this corresponds to a set
of changes in the form of UMLseCh tags.

2. The new activity diagram does not respect the constraint associated with the stereo-
type « rbac ». A flaw is identified in the risk analysis.

3. Additional changes are applied, thus resulting in an « rbac »-compliant activity dia-
gram describing the situation after the introduction of the AMAN.

The two requirements identified in the previous section are represented in UMLseCh by
the addition of the following information:

• the right to perform the protected activity ‘Compute the sequence’ is transferred
from actor TCC to actor AMAN,

• the right to perform the protected activity ‘Modify the sequence’ is transferred from
actor TCC to actor SEQ MAN,

Figure 6.7 presents the activity diagram resulting from this rather naive modification.
The UMLseCh stereotypes « add » and « del » self-describe the history of changes: the
« right » tag is deleted as TCC loses their access rights, while the AMAN is added, with
proper rights assigned to AMAN and SEQ MAN.

The mistake is obvious: while the risk analysis correctly inferred the need to strip the TCC
from their access rights, the new requirements did not specify to update their activities ac-
cordingly. This is witnessed in UMLsec in that the constraint associated with the « rbac »
stereotype is not satisfied any more. Both protected activities ‘Compute the sequence’
and ‘Modify the sequence’ appear in the swim-lane of actor TCC although the pairs
(TCC, ‘Compute the sequence’) and (TCC, ‘Modify the sequence’) are no longer listed
under {right}.

The additional changes necessary to recover the compliance to « rbac » are presented
in figure 6.8. There, all activities by TCC are removed, only to be replaced with two new
activities ‘Monitors traffic’ and ‘Agrees’ and transitions.

In this scenario, the « rbac » stereotype of UMLseCh provides a simple way to express
a static constraint on a model. Such constraints provide consistency checks that can
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routinely and automatically be run on the model during its development. This is especially
useful in the context described here, as the risk analyst and system designer are likely to
be distinct persons who collaborate using distinct languages and tools.
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7 Tool support for Model-Based Verification
in Evolving systems

7.1 Introduction

Understanding the security goals provided by software making use of cryptography is one
of the major challenges with security-critical systems. Any support to aid secure systems
development is thus dearly needed. Towards this goal, the security extension UMLsec for
the Unified Modeling Language allows us to include security requirements as stereotypes
with logical constraints.
In this chapter we present automated tool-support for the analysis of UMLsec and
UMLseCh models against security requirements by checking the constraints associated
with the UMLsec stereotypes. Besides presenting a general, extensible framework for
implementing verification routines for the constraints associated with security-critical UML
stereotypes under evolution, we focus on a plugin that performs a static check for ’Secure
Dependency’ to verify security properties of UMLseCh models.
The plugin provides two functionalities, illustrating the general approach for dealing with
security properties in evolving diagrams. First we have a ’UMLseCh Notation Analyser’,
that gets the evolution information from a UML model and keeps it in a data structure.
This data structure contains all the important information of the delta of changes we need
for further checks.
An additional functionality is the ’UMLseCh Static Check’, which checks whether evolution
preserves the ’Secure Dependency’ property on the model.

7.2 UMLsec Framework

UMLsec is an extension of UML aimed to model security requirements and verifies the
fulfillment of these requirements. It defines a notation as well as formal representations
of the security concepts providing techniques to verify whether the security requirements
are respected. The analysis of the security of a system consists in representing the
execution of this system together with an attacker. This section introduces the UMLsec
Tool Architecture.

7.2.1 Architecture

UML offers an unprecedented opportunity for high-quality critical systems development
that is feasible in an industrial context. As the de-facto standard in industrial modeling, a
large number of developers is trained in UML. Compared to previous industrial notations
with a user community of comparable size, UML is relatively precisely defined. A number
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of tools are being developed to assist the every-day work using UML. The UMLsec frame-
work provides automatic verification plugins of UML models for critical requirements. In
particular, it includes automated analysis of UMLsec models for the security requirements
included as stereotypes. The input is a .zargo or .xmi file containing UML diagrams cre-
ated with the UML tool ArgoUML. A particular focus of many of the verification plugins
within this tool architecture is on security-critical systems.
The tool support for the automated verification of constraints associated with UMLsec
stereotypes by given UML models is constantly under development. The UMLsec frame-
work provides a programming environment for different UML verification tools, that en-
capsulates an MDR repository for loading, parsing, editing and storing UML models.

The Figure 7.1 depicts the UMLsec tool Architecture. The framework defines interfaces,
which are be implemented by the tool. This provides an easy extension mechanism for
including new plugins to the tool, as we will describe in more detail in Section 7.3.

7.2.2 MDR library

Adequate tool support for security validation is important. There are a number of tools
that work with UML 1.4 models and store them in XMI format. XMI is a powerful standard
that makes it possible to exchange models between different tools. UMLsec can import
XMI data into the netbeans Meta data repository, as summarized in Figure 7.2.

The MDR is customized to the particular model type through a metamodel in XML format
that is loaded into the repository. It will then create a storage customized for this type
of model and generate JMI (Java Metadata Interface) definitions for the application (in
our case the UMLsec framework) to access the model. The data extracted from the
model will then be processed by the UMLsec framework. Figure 7.3 gives an overview of
the complete UMLsec tool suite. As soon as the model is loaded, the different UMLsec
checkers can be called to perform an analysis of the model.

7.3 Plugin development

To develop a plugin for the UMLsec framework two classes are needed. One is the
Modul-class and the other is the Check-class. The Modul-class contains methods that
are needed by the framework. In this class one defines a command and a parameter.
The commands implement new functionality in the plugin-window. For each parameter
defined here, the UMLsec framework asks for a value to be given as input to the veri-
fication algorithm implemented. The Modul-class implements ’IVikiToolBase’ and ’IViki-
ToolConsole’. The Check-class contains the ’check-method’, in which the algorithm is
actually implemented. The check-class inherits from ’StaticCheckerBase’.

Finally, a modification takes place in the ’SystemVerificationLoader’ class. The array
’IVikiToolBase []tools’ needs a new entry with the new plugin und a new index must be
created. This makes the new plugin accessible from the Plugin menu list of the tool.
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Figure 7.1: Framework architecture
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Figure 7.2: MDR library

Figure 7.3: UMLsec tool suite
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7.4 UMLseCh

The UMLseCh profile concerns all of UML. Figure 7.4 shows the UMLseCh profile. The
tag ref is a DataTag and the tags substitute, add and delete are all ReferenceTags.
UMLseCh models possible future changes. At the concrete level, i.e. in the tool, this
value is either the model element itself if it can be represented with sequence of charac-
ters, or a namespace containing the model element.
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Figure 7.4: The UMLseCh profile

Although UMLseCh could be used alone as an evolution modeling language, it is initially
intended to model the evolution in a security oriented context. It is thus an extension of
UMLsec and requires the UMLsec profile as prerequisite profile.
For a more complete description of the UMLseCh Notation see Section 2.1.2.

7.5 UMLseCh Framework extension

Typically, it is the responsibility of each plugin of the UMLsec framework, to do the re-
quired calculations for the analysis based on the security-related stereotypes indepen-
dently. For the UMLseCh annotated models however, we want to outsource the com-
putation of the delta, since this is common to all of our UMLseCh plugins and analysis
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Figure 7.5: UMLseCh factory

algorithms. We introduce thus a new layer in the UMLsec framework, which can be used
by any UMLseCh analysis plugin by means of a factory. This allows us by design to
clone the delta information every time a plug-in requires it, without having to re-parse the
UMLseCh diagrams. Additionally, much of the functionality to deal with model correctness
(not security) and model/delta transformation in memory for the analysis algorithms can
be also implemented within the factory. Figure 7.5 summarizes this idea: The generation
of the delta is outsourced into the Factory layer, every plugin gets the delta(s) from the
factory.

To get a better access to the UML-elements of a model and more functionalities, and to
represent the atomic changes within the delta, we have defined a metamodel for the UML
diagrams for which security diagrams are been developed. This is mainly because the
functionality provided by the MDR container is rather rudimentary and leads to efficiency
problems and unnecessary implementation efforts.

For example, a fragment the implemented metamodel we use for Class Diagrams is
shown in Figure 7.6.

7.6 Tool Demo Story

The “UMLseCh Static Check” plugin 1 verifies if a model is still secure with respect to
the « secure dependency » stereotype after evolution by using the verification techniques
described in Chapter 3.

We briefly recall the definition of this stereotype:

« secure dependency » requires that for every dependency (« send » or « call ») between
two classes in a class diagram such that in one of both classes a tag specifies a security
requirement for a method or attribute (for example { high = {method()} } resp.
{ secrecy = {method()} }, { integrity = {method()} } ), then the other class has the same tag

1All the files used in this example can be found in: http://inky.cs.tu-dortmund.de/main2/jj/

umlsectool/manuals_new/UMLseCh_Static_Check_SecureDependency/index.htm where also a screen-
cast is available.
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Figure 7.6: Fragment of the metamodel of a UML class diagram
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for this method/attribute as well.

To perform the verification, the tool uses three vectors add, delete and substitute to store
the delta information. During the check the vectors are verified for consistency, for ex-
ample it is checked whether the substitute vector contains model elements which are al-
ready in the add or delete vector. These consistency checks are common to all UMLseCh
plugins and are performed within the factory. After this, the actual check for secure de-
pendency starts.
For this demonstration the class diagram as depicted in Figure 7.7 is constructed in Ar-
goUML.

7.6.1 Secure Dependency Model

The diagram in Figure 7.7 consists of two classes A and B with attached stereotypes. The
stereotypes for class A are « critical » and « substitute » and for class B « critical »,« add »,
« substitute » and « delete ». Between these classes exists a call-dependency. We in-
spect the values of the stereotypes in both classes.

Figure 7.7: Argo diagram

Figure 7.8: Tags and stereotypes class A

Figures 7.8 and 7.9 show the tags and stereotypes of the classes A and B. For in-
stance, the stereotype « del » modifies the UML-model and deletes the tagged value
{ secrecy = methodD } from Class B. This operation is not performed on Class A, which
maintains this tagged value.
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Figure 7.9: Tags and stereotypes class B

7.6.2 Tool input: Example XMI

The important informations of the UML-model are stored in a XMI-format. The algorithm
uses the information contained in special tags and stereotypes. Listing 7.1 shows a
fragment of the XMI for the class A and the dependency with a Stereotype.

1 <UML:Class xmi.id = ' -64--88-0-101- da8cac0 :129602 bab38 : -8000:0000000000000 DDB'

2 name = 'Class A' visibility = 'public ' isSpecification = 'false'

isRoot = 'false'

3 isLeaf = 'false' isAbstract = 'false' isActive = 'false'>

4 .

5 .

6 .

7 <UML:Namespace.ownedElement >

8 <UML:Dependency xmi.id = ' -64--88-0-101- da8cac0 :129602 bab38

: -8000:0000000000000 DDD'

9 name = 'call -Dep.' isSpecification = 'false '>

10 <UML:ModelElement.stereotype >

11 <UML:Stereotype xmi.idref = ' -64--88-0-101- da8cac0 :129602

bab38 : -8000:0000000000000 DDE'/>

12 </UML:ModelElement.stereotype >

13 <UML:Dependency.client >

14 <UML:Class xmi.idref = ' -64--88-0-101- da8cac0 :129602 bab38

: -8000:0000000000000 DDB'/>

15 </UML:Dependency.client >

16 <UML:Dependency.supplier >

17 <UML:Class xmi.idref = ' -64--88-0-101- da8cac0 :129602 bab38

: -8000:0000000000000 DDC'/>

18 </UML:Dependency.supplier >

19 </UML:Dependency >

20 </UML:Namespace.ownedElement >

21 .

22 .

23 .

24 </UML:Class >

Listing 7.1: Tags and Stereotype in the XMI-file

However, this is transparent to the user, who can directly load the .zargo file of the ex-
ample above to the tool. Once loaded, the user can choose to perform the UMLseCh
Secure Dependency checks by selecting the plug-in from the plug-ins menu list, as seen
in Figure 7.10.
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Figure 7.10: Selecting the UMLseCh plug-in

7.6.3 Results of Analysis

The algorithm checks the delete-, add- and the substitute-vector for classes and the be-
longing dependency. Figure 7.11 shows the logging output of the plugin, when checking
for the deleted model elements. Since this operation is not symmetric for the classes
under consideration, « secure dependency » is violated.

Figure 7.11: The property is violated

Figure 7.12 shows the result summary of the plugin. Since the check of the deleted items
failed, the evolution is considered as not security-preserving.
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Figure 7.12: Result summary

10 30 50 70

To
ta

l t
im

e 
in

 s
ec

on
ds

Number of dependencies 

 

Delta-based verification
Re-verification

0.3 0.5 0.8 11

6

51

310

Figure 7.13: Running time comparison of the verification
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Efficiency gain

It is of interest that the duration of the check for « secure dependency » implemented in
the UMLsec tool behaves in a more than linear way depending on the number of depen-
dencies. In Fig 7.13 we present a comparison between the running time of the verification
by running trivial re-verification and by running the UMLseCh plugin2 on a class diagram
where only 10% of the model elements were modified.

2On a 2.26 GhZ dual core processor

D4.2 Formally founded automated security analysis
version 1.3 | page 135/167



8 Conclusions

In this work we introduced a formal foundation for the UMLseCh notation described in
D4.1, and discussed how the modifications introduced by this notation can be analyzed
for several security properties. We also consider the problem of model consistency after
evolution. We considered selected classes of model evolutions such as addition, deletion,
and substitution of model elements based on structural and behavioral UMLsec diagrams.
Assuming that the starting UMLsec diagrams are secure, which one can verify using the
UMLsec tool framework, our goal is to reuse these existing verification results to minimize
the effort for the security verification of the evolved UMLsec diagrams. We achieved this
goal by the specification and analysis of a number of sufficient conditions for the preser-
vation of different security properties of the starting models in the evolved models. These
conditions are used currently as a basis to extend the existing UMLsec tool framework by
the ability to support secure model evolution.
This extended tool should help the development of evolving systems by warning of pos-
sible security violating modifications of secure models. We also show that the implemen-
tation of the techniques described in this deliverable lead to a significant efficiency gain
compared to the trivial re-verification of the entire model.
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A Evaluation Summary

In this appendix we will give some initial arguments to explain to which degree WP4
complies with the applicable General Scientific Criteria (as defined in D1.2) up to Year 2.
More comprehensive success criteria will be given in Year 3 and the Industrial Criteria
will be then also validated by WP1.

Internal Criteria: Modeling Languages

• Consistency rules of constructs:
Precise rules regulates syntax of artifacts so that not all possible syntactic combi-
nations are possible
Arbitrary syntactic combinations are not allowed, since there is a precise syntax/se-
mantics defined in Chapter 2.

• Computer Aided support of consistency
The plugins for UMLseCh under implementation partially support consistency (be-
sides their main goal: security). The rules for consistency of UML Models under
evolution are all implementable, as defined in Chapter 2. However, this is not the
main goal of the plugins and they will not check all possible consistency problems,
due to their prototypical nature.

• Formal or operational consistency of constructs
There is a formal or operational semantics behind the constructs that determines
which behaviors are formally acceptable/practically executable
This is also defined in this Deliverable for the UMLseCh notation in Chapter 2

• Formal characterization of constructs
There is a clear characterization of the constructs so that is possible to characterize
which behavior is not expressible in the syntax
This follows from the precise semantics definition.

• Local Usability of construct
User does not need to understand other artifacts than the one he needs to model
the specific aspects
The user only needs to understand the UMLseCh notation to model evolutions.

Internal Criteria: Algorithms

• Precise computation:
The mechanisms of computations are well defined and the result of the computation
are clearly defined and interpretable
The mechanisms of computations are algorithms, and are currently being imple-
mented. The result of the computation is fundamentally a boolean, reporting on the
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security of the evolved model(s). Further reporting in the output refers to specific
problems encountered and is clearly defined.

• Effective computation
There is a clear cut justification on how this computation can be effective on current
architectures or the limitations that needs to be overcome
The computation is decidable and we give arguments on its soundness on Chapter
3. However, we do not aim at completeness.

• Computer-Aided Computation
There is a fully automatic or interactive implementation of the algorithms
There is a fully automatic implementation of the algorithms for « secure depen-
dency » and other plugins are being currently developed.

• Formal or operational evidence of efficiency
There is a formal or operational evidence of the efficiency of these algorithms w.r.t.
naive algorithm. For instance, it is not possible to just argue informally that ‘Testing
the difference’ cost less than ‘Testing the whole’ there should be numbers detailing
this result at least for the practical case
There is an informal argument on the efficiency for local enough properties in the
Introduction of the deliverable and there is evidence based on measurements over
large UML models of the algorithm based on the difference versus the trivial reveri-
fication on Chapter 7.

Additionally, WP4 has suggested the following Criteria specific to the Algorithms.

Internal Criteria: WP4 Specific Although the soundness of the algorithms presented is
off course an important feature, we would also like to measure how “good” their coverage
is with respect to the possible deltas expressible by UMLseCh. We begin by noting that
there are three main kinds of objects according to the evolution they represent:

• Deletions

• Additions

• Substitutions

So a first measurement criterion is: Does the algorithm allow evolutions of all kinds?.

By this we mean that the algorithm will consider valid at least some delta including ad-
ditions, substitutions and deletions with respect to the given security requirement (as
opposed to “failing per default”, which is trivially sound).

Additionally, every object in the delta has a UML type, for example “method” (in an evolv-
ing class diagram) or “transition” (in an evolving state-chart diagram). Since none of the
security requirements considered in this work pose any specific restriction on the UML
type of the model elements contained in a diagram (all types are allowed), then a second
criterion is: Does the algorithm allow evolutions of all UML types? (where by UML types
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we mean the model element types definable for the specific diagram under considera-
tion).

So if an algorithm meets these two conditions, we know it will allow at least one evolution
involving additions, substitutions and deletions of model-elements of all types for a given
diagram. The next natural question is: How many evolutions of a given kind and UML
type does the algorithm allow?.

We can answer positively to these questions for all the algorithms presented by showing
that:

• The algorithms deal with additions, deletions and substitutions.

• The algorithms allow evolutions of all UML types for the diagram they consider.

• The algorithms allow an arbitrary number of evolutions of a given kind and UML
type.

Note that this does not mean that the algorithms allow all possible evolutions, they simply
allow an arbitrary number of evolutions of a given kind and type, if some conditions are
satisfied.

Another interesting question is: Given two models M and M ′ satisfying a security prop-
erty P , is there at least one evolution ∆ such that M ′ = M [∆] and (M,∆) is accepted by
the decision algorithm?.

If we can show that given any model element M satisfying P we can find an evolution ∆1

consisting only of deletions such thatM [∆1] = ∅, and that starting from the empty model ∅
we can reach any M ′ satisfying P by ∆2 then we can answer affirmatively to the previous
question if both ∆1 and ∆2 are allowed by the algorithm (since then ∆ = (∆1,∆2) will be
allowed).

We claim that this property holds for all of the algorithms presented with the exception of
the decision procedure dealing with secrecy, since we can at least reach an empty model
and reconstruct any model respecting the decision procedure defined in Chapter 3.

D4.2 Formally founded automated security analysis
version 1.3 | page 143/167



B The Secure-Dependency Plugin

In this appendix we show in more detail the actual status of the implementation effort for
the SecureDependency plug-in. We will continue this task (T4.3) until M30.

This documentation deals with a program which can examine weather a model is secure
or not. The useability will be improved and restored and a part of UMLseCh will be
implemented as described in Section 3. The first part shows how to extend the program
with plugins. The second part discusses three new plugins. The first plugin is able to
dump all model elements. The second one is specialized on security relevant Information
which is stores in a data structure that is also described in the paper mentioned above.
The third plugin implements a static check for "secure Dependency" and defines it. After
this we will describe the UMLTypeScanner, which has been developed to ease the use of
loaded models. Last but not least changes to the GUI will be explained broadly.

B.1 Generation of a plugin template

This chapter is about implementation of a template for a new plugin for the program
"‘UMLsec Verification Plugin"’. To avoid any confusion according the naming, we will use
the same terms as in the source code. For this purpose the image 2.3 will be described.

It has been clicked on "‘Tools"’ on the menu bar On the GUI of UMLsec System Verifica-
tion Plugin and "‘Add"’. As a result a nameless selection window has been opened which
allows us to integrate "‘Commands"’ for verification. On the left of this selection window
actual tools are listed and on the right the corresponding commands for the verification
of UMLsec diagrams.

The Tools are implemented in Java. This Jave files are stored in different folders for the
sake of clarity. For structuring each folder contains a folder "‘checks"’, which includes
the command java files with the implemented check methods. It is also possible to ab-
stract several verification mechanisms in one command-java-file and change the call to
the check methods in the tool-java-file.

Now we will introduce a template for a plugin which is a command that poses a minimal
framework for such a Tool. It consists of a java-command file that contains an empty
verification mechanism which can be later specified by the developer. For the proper
integration of such a tool several steps have to be considered. The Tool has to know
its commands and has to be known by the UMLsec verification plugin. In the first step
we will create a folder structure which is the foundation for our tool and explain it. In the
second step we will go into detail on the content of the tool java file. A template code
is included and tips for choosing your domain name will be given. Step 3 deals with the
template code in the command java file. Last but not least, in step 4 we have to create
the tool as objects, insert them into arrays and allocate necessary ids.
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Figure B.1: UMLsec Tool

B.1.1 Step 1: Create tool folder

1. Change to folder src\uml\umlsec\viki\tools\

2. Create folder with an expressive name for the tool. In the following we will call it
[ToolFolder].

3. Create a subfolder in this folder and name it "‘checks"’.

B.1.2 Step 2: Create tool java file

1. Create file in the folder [ToolFolder] and name it meaningfully. The file name
without "‘.java"’ is called [ToolName].

2. The content of this file is described in listing B.1.

3. All variables and contents with the infix “Exemple“ can be chosen arbitrary but con-
sistently and according to conventions.
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1 // define the package

2 package tum.umlsec.viki.tools.[ ToolFolder ];

3

4 // important imports

5 import java.util.Iterator;

6 import java.util.Vector;

7 import tum.umlsec.viki.framework.ILogOutput;

8 import tum.umlsec.viki.framework.ITextOutput;

9 import tum.umlsec.viki.framework.mdr.IMdrContainer;

10 import tum.umlsec.viki.framework.toolbase.CommandDescriptor;

11 import tum.umlsec.viki.framework.toolbase.IVikiToolBase;

12 import tum.umlsec.viki.framework.toolbase.IVikiToolConsole;

13 import tum.umlsec.viki.framework.toolbase.IVikiToolGui;

14 // is needed for web -support

15 import tum.umlsec.viki.framework.toolbase.IVikiToolWeb;

16

17 // import your check methods classes

18 import tum.umlsec.viki.tools.[ ToolFolder ]. checks .*;

19

20 // class to integrate the tool into the framework

21 publ ic class ToolEvolutionCheck implements IVikiToolBase , IVikiToolConsole {

22

23 // parameters to identify check methodes

24 publ ic s t a t i c f i n a l i n t CID_EXAMPLECHECKNAME = 1;

25 // ...

26

27 // depth of the check methods ids (not sure)

28 publ ic s t a t i c f i n a l i n t CPID_DEPTH = 1;

29 Vector commands = new Vector ();

30 IMdrContainer mdrContainer;

31 boolean returnValue= f a l s e ;

32 Vector parametersEmpty = new Vector ();

33

34 // method to return the instance that implements the interface for the

console

35 publ ic IVikiToolConsole getConsole () { re turn t h i s ; }

36

37 // method to return the instance that implements the interface for the

GUI

38 publ ic IVikiToolGui getGui () { re turn n u l l ; }

39

40 // method to return the instance that implements the interface for the

web

41 publ ic IVikiToolWeb getWeb () { re turn n u l l ; }

42

43 // method to return the instance that implements the basic functions of

the tool

44 publ ic IVikiToolBase getBase () { re turn t h i s ;}

45

46 // method to return the name of the tool

47 publ ic String getToolName () { re turn "Example Tool Name";}

48

49 // method to return the desription of the tool

50 publ ic String getToolDescription () { re turn "Example Description";}

51

52 // method to initialize the tool

53 publ ic void initialiseBase(IMdrContainer _mdrContainer){

54 mdrContainer = _mdrContainer;

55 commands.add(cmdALL);

56 }

57

58 // method to initialize the console

59 publ ic void initialiseConsole (){}

60

61 // method to return the possible commands of the console
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62 publ ic Iterator getConsoleCommands () {

63 re turn commands.iterator ();

64 }

65

66 // method to execute the chosen commands of the console

67 publ ic void executeConsoleCommand(CommandDescriptor _command , Iterator

_parameters , ITextOutput _mainOutput , ILogOutput _auxOutput) {

68 // switch to the ID of the method which is selected

69 switch(_command.getId()) {

70

71 // static variable with check method ID

72 case CID_EXAMPLECHECKNAME:

73

74 // calls the check method with necessary parameters and

returns the result of the check

75 returnValue = new [CommandName ]().check(mdrContainer ,

_parameters , _mainOutput);

76 break;
77

78 d e f a u l t :
79 // default return value

80 returnValue = f a l s e ;

81 }

82 }

83

84 // setting properties of the check methods

85 CommandDescriptor cmdALL = CommandDescriptor.CommandDescriptorConsole(

CID_EXAMPLECHECKNAME , "Example Check Name", "Example Check

Description", t rue , parametersEmpty);

86

87 }

Listing B.1: Quellcode der Tool-Java-Datei

B.1.3 Step 3: Create a Command-Java-File

1. Create a Java file in the previous created folder
[ToolFolder]\checks\ Ordner and choose a meaningful name. The file without
“.java“ is called [CommandName].

2. The template code from listing B.2 belongs to this class

1 // define the package

2 package tum.umlsec.viki.tools.[ ToolFolder ]. checks;

3

4 // imports

5 import java.util .*;

6 import org.omg.uml.foundation.core .*;

7 import tum.umlsec.viki.framework.ITextOutput;

8 import tum.umlsec.viki.framework.mdr.IMdrContainer;

9 import tum.umlsec.viki.tools.checkstatic.StaticCheckerBase;

10

11 // [CheckingClass] extends the StaticCheckerBase - forces to implement the "check

"-method

12 publ ic class [CommandName] extends StaticCheckerBase {

13 // output textbox stream

14 ITextOutput textOutput;

15

16 // check method

17 publ ic boolean check(IMdrContainer _mdrContainer , Iterator _parameters ,

ITextOutput _textOutput) {
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18 // check something

19 re turn t rue ; // or return false

20 }

21 }

Listing B.2: Command-Java-file source code

B.1.4 Step 4: Integrate tool into main program

1. file: tum.umlsec.viki.framework.Loader.java

• After importing all other tools we import:
import tum.umlsec.viki.tools .[ ToolFolder ].[ ToolName];

• We have to add an entry into IVikiToolBase:
new [ToolName]()

2. file: tum.umlsec.viki.framework.web.LoaderWeb.java

• After importing all other tools we import:
import tum.umlsec.viki.tools .[ ToolFolder ].[ ToolName];

• insert code from listing B.3 into method InitialiseWebFramework().

1 // increment index

2 tools = new IVikiToolBase [21];

3 // Increment the indexbounds

4 toolsWeb = new InstalledWebToolDescriptor [21];

5 // Insert tool into the array

6 tools[Indexgrenze -1] = new [ToolName ]();

Listing B.3: Code-extension - method InitialiseWebFramework()

3. file: open.umlsec.tools.checksystem.gui.
SystemVerificationLoader.java

• Once again after importing all other tools we import:
import tum.umlsec.viki.tools .[ ToolFolder ].[ ToolName];

• method SystemVerificationLoader() has to be modified:
– VikiToolBase-Array: new [ToolName]()

– variable TOOL_IDX_EXAMPLETOOLNAME has to be incremented
– also increment Variablee TOOL_IDX_MAX

4. file: open.umlsec.tools.checksystem.checks.ToolSelector.java

• One last time we have to import the tool after importing all other tools:
import tum.umlsec.viki.tools .[ ToolFolder ].[ ToolName];

• Now we create signature variable:
private ToolSignature [ToolSignatureName] =

new ToolSignature(SystemVerificationLoader.
TOOL_IDX_EXAMPLETOOLNAME);
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• insert the following code into the method public void clearAll (){...}
[ToolSignatureName].resetQueryResult();

B.2 Tool UMLsec Notation Analyser:
Command DumpAllModelElements

As we already discussed a template for a plugin, we will now only explain functionality
of the check method of command DumpAllModelElements which is in Umlsec Notation

Analyser. For this we use listing B.4.
1 // DumpAllModelElements check -method

2 publ ic boolean check(IMdrContainer _mdrContainer , Iterator _parameters ,

ITextOutput _textOutput) {

3 //GUI -Outputcontainer for check -messages

4 textOutput = _textOutput;

5

6 CorePackage corePackage ;

7 corePackage = _mdrContainer.getUmlPackage ().getCore ();

8

9 UmlTypeScanner umlident = new UmlTypeScanner ();

10

11 // -------------------------------------------------

12

13 //None of the diagramtypes could be identified

14 i f (! umlident.identifiable(corePackage)) re turn f a l s e ;

15

16 // -------------------------------------------------

17

18 textOutput.writeLn("Modeltyp: " + umlident.diagramType(corePackage));

19 textOutput.writeLn("");

20

21 textOutput.writeLn("====[ Dumping all model elements ]====");

22

23 String act_elem = "";

24 f o r (Iterator it = corePackage.getModelElement ().refAllOfType ().iterator ()

;it.hasNext ();){

25 ModelElement me = (ModelElement) it.next();

26 String name = umlident.modelElementType(me.getClass ().getName ());

27 i f (!name.equals(act_elem)){
28 act_elem = name;

29 textOutput.writeLn("");

30 textOutput.writeLn("--- All " + act_elem + "s ---");

31 }

32 i f (name.equals("TaggedValue")){
33 TaggedValue tagValue = (TaggedValue) me;

34 textOutput.writeLn("- " + umlident.modelElementType(tagValue.

getModelElement ().getClass ().getName ()) + ":" + tagValue.

getModelElement ().getName () + " | " + tagValue.getType ().getName

() + " | Value: " + tagValue.getDataValue ().iterator ().next().

toString ());

35 } else {
36 i f (me.getName () == n u l l || me.getName ().equals("")){

37 textOutput.writeLn("- " + act_elem + " with no name");

38 } else {
39 textOutput.writeLn("- " + me.getName ());

40 }

41 }

42 }

43

44 re turn t rue ;

45 }

D4.2 Formally founded automated security analysis
version 1.3 | page 149/167



Listing B.4: Check-method DumpAllModelElements

This is a method which returns like all check methods boolean as return type. This
symbolizes the success state of the check method. If the value is true the check was suc-
cessful otherwise it is false. The method is called with some parameters which has been
passed to the tool previously. This parameters are IMdrContainer which contains mod-
els, iterator parameters and a output text box ITextOutput. The output text box is located
on the GUI and shows the statues of the check method. In line 4 the reference of the
passed text box is assigned to the variable textOutput. In line 6 a variable corePackage

of type CorePackage is created. After that the core of UmlPackage of IMdrContainer
is assigned to this variable. Further on an UmlTypeScanner umlident is created which
identifies diagram type and model element classes. The class UmlTypeScanner will be
discussed on page 30 in chapter 7. Line 14 examines if a diagram is clearly identifiable.
Is this not the case the check will be terminated without success. At this point the first
output begins. The diagram type and a new line will be displayed. An output follows which
indicates that henceforth model elements will be dumped (line 21). In line 23 an empty
string act_element is created. We will explain the use of this variable in a moment. Pri-
mary the for-loop is entered which displays one by one all elements of the model group.
In the loop header an iterator is initialised with the iterator provided by the core. All ele-
ments are grouped and stored in this iterator. This is important for the algorithm so that
all groups are listed just once. The condition it.hasNext() checks if the iterator provides
further elements. A counter is not needed therefore this part remains empty. In line 25 a
new element is taken from the iterator. The local string name gets as value the type of
the element. The if statement from line 27 till line 31 is important for the title of following
elements. The condition proves if string name, which contains the type of element is not
equal with string act_elm that is initialised in line 23. Are both strings equal the part
which prints a new headline will be skipped as the element belongs to the current group.
Otherwise the string act_elm gets the value of string name. An empty string will be
printed followed by new headline of the current element group. Line 32 proves if current
element group is “Taggedvalue“. In that case value and element with type will be printed.
From line 35 on the else part will be discussed. In line 36 is proved whether an element
is null or ““. If ““ is true the message “an element without name has been found“ will be
printed otherwise just the name of the element. At least the method returns true.

B.3 Datastructure StructUMLseChDelta

In chapter 3 is a concept represented which describes
“Secure Dependency“- check for delta. For this purpose we need an additional class that
provides data structure for three vectors (“add“,“del“,“subs“). You can find it in listing 4.1.
1 // Containerclass for UMLseCh -Delta

2 package tum.umlsec.viki.tools.umlseChNotationAnalyser.checks;

3

4 import java.util.Iterator;

5 import org.omg.uml.foundation.core .*;

6 import tum.umlsec.viki.UmlTypeScanner;

7
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8

9 publ ic class StructUMLseChDelta {

10 p r i v a t e ModelElement element;

11 p r i v a t e String value;

12 p r i v a t e UmlTypeScanner umlident = new UmlTypeScanner ();

13

14 // Constructor

15 publ ic StructUMLseChDelta(ModelElement _element , String _value) {

16 t h i s .element = _element;

17 t h i s .value = _value;

18 }

19

20

21 // Value methods

22 publ ic String getValue () {

23 re turn t h i s .value;

24 }

25

26 publ ic String [] getValues () {

27 String [] temp;

28 temp = t h i s .value.split(",");

29

30 // deleting pre - or suffix spaces in the array

31 f o r (String item: temp) item.trim();

32

33 re turn temp;

34 }

35

36 publ ic boolean setValue(String value) {

37 t h i s .value = value;

38 re turn t rue ;

39 }

40

41 // ModelElement methods

42 publ ic ModelElement getModelElement () {

43 re turn t h i s .element;

44 }

45

46 publ ic boolean setModelElement(ModelElement element) {

47 t h i s .element = element;

48 re turn t rue ;

49 }

50

51 // ID method

52 publ ic String getID() {

53 re turn umlident.modelElementID( t h i s .element);

54 }

55

56 // Parent & path methods

57 publ ic ModelElement getParent () {

58 TaggedValue tv = (TaggedValue) t h i s .element;

59 re turn tv.getModelElement ();

60 }

61

62 publ ic String getPath () {

63 TaggedValue tv = (TaggedValue) t h i s .element;

64 re turn ("[" + umlident.modelElementType(tv.getModelElement ().getClass ().

getName ()) + "] " + tv.getModelElement ().getName () + " -> [TaggedValue]

" + tv.getType ().getName ());

65 }

66

67 // Pattern method (only for Subs)

68 publ ic ModelElement getPattern (){

69 TaggedValue tv = (TaggedValue) t h i s .element;

70 ModelElement me = tv.getModelElement ();

71 f o r (Iterator iter = me.getTaggedValue ().iterator (); iter.hasNext ();){
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72 TaggedValue pat = (TaggedValue) iter.next();

73 i f (pat.getType ().getName ().equals("pattern") && pat.getModelElement ().

equals(me)){

74 re turn pat;

75 }

76 }

77 re turn n u l l ;
78 }

79

80 // Typ method

81 publ ic String getType (){

82 re turn umlident.modelElementType( t h i s .element.getClass ().getName ());

83 }

84

85 publ ic boolean equals(StructUMLseChDelta item){

86 i f ( t h i s .value.equals(item.getValue ())

87 && t h i s .getParent ().equals(item.getParent ())

88 && t h i s .getType ().equals(item.getType ())){

89 re turn t rue ;

90 } else {
91 re turn f a l s e ;

92 }

93

94

95 }

96 }

Listing B.5: StructUMLseChDelta

B.4 Tool UMLseCh Static Check: Command SecureDependency

By using data structure StructUMLseCHDelta from chapter 4 it is possible to execute the
“SecureDependancy“-check on delta. For that we need vector “add“,“del“ and “subs“.
The output occurs in ITextOutout. The IMdrConteiner is a global variable because so it
doesn’t has to be passed each time through parameters. You can find this code in Listing
5.1
1 // Output Textbox Stream

2 ITextOutput textOutput;

3 IMdrContainer mdrContainer;

4

5 // datastructure for UMLseCh -Delta

6 Vector <StructUMLseChDelta > add = new Vector ();

7 Vector <StructUMLseChDelta > del = new Vector ();

8 Vector <StructUMLseChDelta > subs = new Vector ();

Listing B.6: SecureDependency - global variables

The following Listing B.7 contains code of the main check method, which calls method for
filling the vectors with delta elements(listing: B.8), method for checking preconditions (list-
ing: B.9 and B.10) and method for checking the secure dependency (listing: B.11). When
all checks were successful the concatenation is generated which delivers the results.
1 // Secure Dependency check -method

2 publ ic boolean check(IMdrContainer _mdrContainer , Iterator _parameters ,

ITextOutput _textOutput) {

3 boolean fillbool , checkAbool , checkBbool , checkCbool;

4 t h i s .textOutput = _textOutput;

5 t h i s .mdrContainer = _mdrContainer;
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6

7 textOutput.writeLn("####[ UMLseCh Secure Dependency check ]####");

8 textOutput.writeLn ();

9 textOutput.writeLn("

##########################################################");

10 textOutput.writeLn("# STEP 1:

#");

11 textOutput.writeLn("# Filling the delta -verctors: add , delete and substitute

#");

12 textOutput.writeLn("

##########################################################");

13 textOutput.writeLn ();

14

15 fillbool = t h i s .fillVectors ();

16

17 textOutput.writeLn ();

18 textOutput.writeLn("

##########################################################");

19 textOutput.writeLn("# STEP 2a: Check the Pre -Condition A:

#");

20 textOutput.writeLn("# Checking that the same modelelement is not rather

#");

21 textOutput.writeLn("# added and deleted by UMLseCh at the same time.

#");

22 textOutput.writeLn("

##########################################################");

23 textOutput.writeLn ();

24

25 checkAbool = t h i s .checkA ();

26

27 textOutput.writeLn ();

28 textOutput.writeLn("

##########################################################");

29 textOutput.writeLn("# STEP 2b: Check the Pre -Condition B:

#");

30 textOutput.writeLn("# Checking that no element of a substition is an element

#");

31 textOutput.writeLn("# of the add or delete vector.

#");

32 textOutput.writeLn("

##########################################################");

33 textOutput.writeLn ();

34

35 checkBbool = t h i s .checkB ();

36

37 textOutput.writeLn ();

38 textOutput.writeLn("

##########################################################");

39 textOutput.writeLn("# STEP 3:

#");

40 textOutput.writeLn("# Checking the secure dependency UMLseCh conditions.

#");

41 textOutput.writeLn("

##########################################################");

42 textOutput.writeLn ();

43

44 checkCbool = t h i s .checkC ();

45

46 textOutput.writeLn ();

47 textOutput.writeLn("

##########################################################");

48 textOutput.writeLn("# STEP 4:

#");

49 textOutput.writeLn("# Conclusion:

#");
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50 textOutput.writeLn("

##########################################################");

51 textOutput.writeLn ();

52

53 i f (fillbool && checkAbool && checkBbool && checkCbool){

54 textOutput.writeLn("[SUCC] 'Secure Dependency ' conditions are");

55 textOutput.writeLn(" given after UMLseCh evolution. See above");

56 textOutput.writeLn(" more informations.");

57 re turn t rue ;

58 } else {
59 textOutput.writeLn("[FAIL] 'Secure Dependency ' conditions are");

60 textOutput.writeLn(" violated after UMLseCh evolution. See above");

61 textOutput.writeLn(" more informations.");

62 re turn f a l s e ;

63 }

64 }

Listing B.7: SecureDependency - main check-method

The following listing shows how the vectors is filled.
1 // --------------------------------------------------------------------------

2 p r i v a t e boolean fillVectors (){

3 CorePackage corePackage;

4 corePackage = mdrContainer.getUmlPackage ().getCore ();

5

6 // Filling the vectors with all UMLseCh relevant TaggedValues

7 TaggedValueClass taggedValueClass = (TaggedValueClass)corePackage.

getTaggedValue ();

8 f o r (Iterator iter1 = taggedValueClass.refAllOfClass ().iterator (); iter1.

hasNext ();){

9 TaggedValue tagValue = (TaggedValue) iter1.next();

10

11 i f (tagValue != n u l l && tagValue.getType ()!= n u l l && tagValue.getType ().

getName ()!= n u l l && (tagValue.getType ().getName ().equals("ref")

12 || tagValue.getType ().getName ().equals("pattern")

13 || tagValue.getType ().getName ().startsWith("substitute")

14 || tagValue.getType ().getName ().startsWith("add")

15 || tagValue.getType ().getName ().startsWith("delete")

16 || tagValue.getType ().getName ().startsWith("["))){

17

18 //adds the elements to the delta -datastructure

19 i f (tagValue.getType ().getName ().startsWith("add")) add.addElement(

new StructUMLseChDelta(tagValue , tagValue.getDataValue ().iterator

().next().toString ()));

20 i f (tagValue.getType ().getName ().startsWith("substitute")) subs.

addElement(new StructUMLseChDelta(tagValue , tagValue.getDataValue

().iterator ().next().toString ()));

21 i f (tagValue.getType ().getName ().startsWith("delete")) del.addElement

(new StructUMLseChDelta(tagValue , tagValue.getDataValue ().

iterator ().next().toString ()));

22 }

23 }

24

25 // Show an overview of found UMLseCh TaggedValues

26 f o r (StructUMLseChDelta item: add){

27 f o r (String ausgabe: item.getValues ()){

28 textOutput.writeLn("[add] " + ausgabe);

29 }

30 }

31 f o r (StructUMLseChDelta item: del){

32 f o r (String ausgabe: item.getValues ()){

33 textOutput.writeLn("[del] " + ausgabe);

34 }

35 }

36 f o r (StructUMLseChDelta item: subs){
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37 f o r (String ausgabe: item.getValues ()){

38 textOutput.write("[sub] " + ausgabe);

39 }

40 TaggedValue pat = (TaggedValue) item.getPattern ();

41 i f (pat != n u l l ) textOutput.writeLn(" [pattern] " + pat.getDataValue ().

iterator ().next());

42 }

43

44

45 re turn t rue ;

46 }

Listing B.8: SecureDependency - fill vectors

Using the already known scheme in line 8 till 23 all tagged values will be passed and
parsed in Line 11. If the tagged value is “add“,“deleted“ or “substitute“ it will be stored
together with a value in the according vector in the data structure
StructUMLseChDelta. Then from line 25 the Output follows.

On the basis of [models2010-Paper] the first precondition (listing B.9) is checked. This
check makes the algorithm more stable and identifies previously eventual errors. The
proved formula is:

@o, o′(o ∈ Add ∧ o′ ∈ Del ∧ o = o′) (B.1)

1 // --------------------------------------------------------------------------

2 p r i v a t e boolean checkA (){

3 f o r (StructUMLseChDelta item: add){

4 f o r (StructUMLseChDelta item2: del){

5 i f (item.equals(item2)){

6 textOutput.writeLn("[FAIL] add -vector -element with the value '" +

item.getValue () + "' and parent");

7 textOutput.writeLn(" '" + item.getParent ().getName () + "'

equals an delete -vector -element with the same");

8 textOutput.writeLn(" value and parent!");

9 re turn f a l s e ;

10 }

11 }

12 }

13 textOutput.writeLn("[SUCC] There is no evidence of conformity between the add

- and the delete -vector.");

14 textOutput.writeLn(" The check was succesful.");

15 re turn t rue ;

16 }

Listing B.9: SecureDependency - precondition-check A

The second part of the condition that will be analysed (listing B.10) is the following:

@o, o′(o ∈ Add ∨ o′ ∈ Del) ∧ ((o, o′) ∈ Subs ∨ (o′, o) ∈ Subs) (B.2)

In the first part (line 24 ff.) it is checked if added elements are substitute at the same
time. In accordance to this the second part (line 26 ff.) checks if a deleted element is also
substitute.

1 // --------------------------------------------------------------------------

2 p r i v a t e boolean checkB (){

3
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4 f o r (StructUMLseChDelta item2: subs){

5 TaggedValue pat = (TaggedValue) item2.getPattern ();

6

7 // Check Add - Subs

8 f o r (StructUMLseChDelta item: add){

9 i f (pat != n u l l ){
10 i f (item.getValue ().equals(pat.getDataValue ().iterator ().next())){
11 textOutput.writeLn("[FAIL] The pattern of a substitute -vector -element

with the value");

12 textOutput.writeLn(" '" + item.getValue () + "' and the parent '"

+ item.getParent ().getName () + "'");

13 textOutput.writeLn(" equals an add -vector -element with same value

and parent");

14 re turn f a l s e ;

15 }

16 i f (item.getValue ().equals(item2.getValue ())){
17 textOutput.writeLn("[FAIL] substitute -vector -element with the value '"

+ item.getValue () + "'");

18 textOutput.writeLn(" and the parent '" + item.getParent ().getName

() + "' equals an add -vector -element");

19 textOutput.writeLn(" with same value and parent");

20 re turn f a l s e ;

21 }

22 }

23 }

24

25 // Check Del - Subs

26 f o r (StructUMLseChDelta item: del){

27 i f (pat != n u l l ){
28 i f (item.getValue ().equals(pat.getDataValue ().iterator ().next())){
29 textOutput.writeLn("[FAIL] The pattern of a substitute -vector -element

with the value");

30 textOutput.writeLn(" '" + item.getValue () + "' and the parent '"

+ item.getParent ().getName () + "'");

31 textOutput.writeLn(" equals an delete -vector -element with same

value and parent");

32 re turn f a l s e ;

33 }

34 i f (item.getValue ().equals(item2.getValue ())){
35 textOutput.writeLn("[FAIL] substitute -vector -element with the value '"

+ item.getValue () + "'");

36 textOutput.writeLn(" and the parent '" + item.getParent ().getName

() + "' equals an delete -vector -element");

37 textOutput.writeLn(" with same value and parent");

38 re turn f a l s e ;

39 }

40 }

41 }

42 }

43 textOutput.writeLn("[SUCC] There is no evidence of conformity between the

substitute -vector , its patterns and");

44 textOutput.writeLn(" the delete - or add -vector. The check was succesful."

);

45 re turn t rue ;

46 }

Listing B.10: SecureDependency - precondition-check B

The check method returns false when conditions in one of the elements are violated.
This affects the whole check. If the check is successful the method returns true.

1 f o r (StructUMLseChDelta additem: add){

2 i f (umlident.isElementType( t h i s .mdrContainer.getUmlPackage ().getCore (),

umlident.umlseChOperation(additem.getValue ()), "Operation")){
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3 textOutput.writeLn(" [!!!] Found UMLseCh tagvalue associated to the

operation: " + additem.getValue ());

4 textOutput.writeLn(" [Info] parent model element: " + additem.

getParent ().getName ());

5 //Check that the Tag is a TagValue of an UmlClass

6 i f (umlident.modelElementType(additem.getParent ().getClass ().getName ()).
equals("UmlClass")){

7 f o r (Iterator iter_dep = t h i s .mdrContainer.getUmlPackage ().getCore

().getDependency ().refAllOfClass ().iterator (); iter_dep.

hasNext ();){

8 Dependency depend = (Dependency) iter_dep.next();

9 UmlClass client = (UmlClass) depend.getClient ().iterator

().next();

10 UmlClass supplier = (UmlClass) depend.getSupplier ().

iterator ().next();

11 Stereotype depend_stereo = (Stereotype) depend.getStereotype ()

.iterator ().next();

12 String depend_stereo_value = "";

13 i f (depend_stereo != n u l l ) depend_stereo_value = depend_stereo.

getName ();

14 //Only call and send dependencies

15 i f ( (depend_stereo_value.equals("call") || depend_stereo_value

.equals("send"))

16 && (client.equals(additem.getParent ()) || supplier.equals

(additem.getParent ())) ){

17 boolean bool_client = f a l s e ;

18 boolean bool_supplier = f a l s e ;

19 textOutput.writeLn(" [!->] Checking both classes

belonging to dependency " + depend.getName () + ": ["

+ client.getName () + "-->" + supplier.getName () + "].

");

20 textOutput.writeLn(" Both classes should have the

same UMLseCh add -tagvalue.");

21 //Check that in the other Class the security Tag is also

removed

22 f o r (StructUMLseChDelta additem2: add){

23 //The other class has to delete the same securityTag

for the same method ...

24 i f (additem.getValue ().equals(additem2.getValue ()) &&

additem2.getParent ().equals(client)){

25 textOutput.writeLn(" [ok] " + client.

getName () + " has 'add = " + additem.getValue

() + "'");

26 bool_client = t rue ;

27 }

28 i f (additem.getValue ().equals(additem2.getValue ()) &&

additem2.getParent ().equals(supplier)){

29 textOutput.writeLn(" [ok] " + client.

getName () + " has 'add = " + additem.getValue

() + "'");

30 bool_supplier = t rue ;

31 }

32 }

33 f o r (StructUMLseChDelta delitem2: del){

34 i f (supplier.equals(additem.getParent ()) && delitem2.

getValue ().equals(client.getName ())){

35 textOutput.writeLn(" [ok] Because " +

client.getName () + " and all its dependencies

will be deleted");

36 bool_supplier = t rue ;

37 }

38 i f (client.equals(additem.getParent ()) && delitem2.

getValue ().equals(supplier.getName ())){

39 textOutput.writeLn(" [ok] Because " +

supplier.getName () + " and all its

dependencies will be deleted");
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40 bool_supplier = t rue ;

41 }

42 }//-End of Check that in the other ...

43 i f (! bool_client){
44 textOutput.writeLn(" [xx] " + client.getName () +

" has not the add -UMLseCh -tagvalue which");

45 textOutput.writeLn(" " + supplier.getName ()

+ " has.");

46 }

47 i f (! bool_supplier){
48 textOutput.writeLn(" [xx] " + supplier.getName ()

+ " has not the add -UMLseCh -tagvalue which");

49 textOutput.writeLn(" " + client.getName () +

" has.");

50 }

51 bool_add = bool_add & bool_client & bool_supplier;

52 }

53 }

54 } else {
55 textOutput.writeLn("[ERROR] UMLseCh delete -tagvalue referring to

an operation but its parent is no class!");

56 }//-End of Check that the Tag is a TagValue of an UMLClass

57 }

58 }

59 // Conclusion of Iterating over als del -Deltas

60 i f (bool_add) textOutput.writeLn(" [SUCC] the UMLseCh add -delta satisfies the

secure dependency conditions");

61 else textOutput.writeLn(" [FAIL] the UMLseCh add -delta does not satisfy the

secure dependency conditions");

Listing B.11: SecureDependency - check C

This part runs through the add vector which has been filled with the ‘add‘ part of UMLseCh
delta, as shown in listing B.8. Inside this iteration (line 2-57) only vector entries are
considered that want to change security properties of a method (line 2). In such case
they will be first shown to the user through output (line 3,4) and then the algorithm proves
if the found elements belongs to a class at all (line 6). If they don’t an error occurs. One
of the secure dependency conditions is that classes which are linked by << call >> or
<< send >> dependencies need the same tags. So it is a task of the algorithm to find
this dependencies. For this there it uses an iteration (line 7) and an if-statement (15,16).
New created variables between the for-loop and the if-statement are useful for an easier
handling of the found connections. When we are within the if-statement it is clear that a
<< call >> or << send >> dependency has been found. That means that the regarded
add vector element belongs to one end of the dependency. Now two further iterations
(line 22-32 and 34-42) have to find out if the class at the other end of the dependency
has also the tagged value or if it is in the delete-vector. Both options would fulfil the
condition of ‘secure dependency‘. After this check the found elements are displayed and
the if-statements as well as the for-loops are exited.
We would like to point out that there are cases which can not be covered by this algorithm.
As it is not possible to load a second diagram as delta you can not add or substitute whole
classes, dependencies and frames which enclose several elements. The notation for
adding classes via UMLseCh tagged values into ArgoUML and VikiTool is not applicable
yet. The professorship is already working on solutions for this problem.
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B.5 UMLseCh Notation Analyser:
DumpAllUMLSeChElements

DumpAllUMLSeChElements check method is more complex than the one of B.2. This
method belongs to UMLseCh Notation Analyser Tool. This chapter explains the func-
tionality with the help of Listing B.12.

1 publ ic boolean check(IMdrContainer _mdrContainer , Iterator _parameters ,

ITextOutput _textOutput) {

2 // counters

3 i n t tag_found = 0;

4 i n t stereo_found = 0;

5 i n t dep_stereo_found = 0;

6 i n t tag_exist = 0;

7 i n t stereo_exist = 0;

8 i n t dep_stereo_exist = 0;

9

10 // datastructure for UMLseCh -Delta

11 Vector <StructUMLseChDelta > add = new Vector ();

12 Vector <StructUMLseChDelta > del = new Vector ();

13 Vector <StructUMLseChDelta > subs = new Vector ();

14

15 //dump

16 textOutput = _textOutput;

17 textOutput.writeLn("=================== Dumping all UMLseCh elements ...");

18

19 CorePackage corePackage ;

20 corePackage = _mdrContainer.getUmlPackage ().getCore ();

21

22 UmlTypeScanner umlident = new UmlTypeScanner ();

23

24 // list all the tagged values

25 textOutput.writeLn ("======= All UMLseCh Tagged Values");

26 TaggedValueClass taggedValueClass = (TaggedValueClass)corePackage.

getTaggedValue ();

27 f o r (Iterator iter1 = taggedValueClass.refAllOfClass ().iterator (); iter1.

hasNext ();){

28 TaggedValue tagValue = (TaggedValue) iter1.next();

29 tag_exist += 1;

30 i f (tagValue != n u l l && tagValue.getType ()!= n u l l && tagValue.getType ().getName ()

!= n u l l && (tagValue.getType ().getName ().equals("ref")

31 || tagValue.getType ().getName ().equals("pattern")

32 || tagValue.getType ().getName ().startsWith("substitute")

33 || tagValue.getType ().getName ().startsWith("add")

34 || tagValue.getType ().getName ().startsWith("delete")

35 || tagValue.getType ().getName ().startsWith("["))){

36

37 //adds the elements to the delta -datastructure

38 i f (tagValue.getType ().getName ().startsWith("add")) add.addElement(new
StructUMLseChDelta(tagValue , tagValue.getDataValue ().iterator ().next().

toString ()));

39 i f (tagValue.getType ().getName ().startsWith("substitute")) subs.addElement(

new StructUMLseChDelta(tagValue , tagValue.getDataValue ().iterator ().

next().toString ()));

40 i f (tagValue.getType ().getName ().startsWith("delete")) del.addElement(new
StructUMLseChDelta(tagValue , tagValue.getDataValue ().iterator ().next().

toString ()));

41

42 textOutput.writeLn ("Tagged Value: " + tagValue.getType ().getName () + " = "

+ tagValue.getDataValue ().iterator ().next().toString ());

43 textOutput.writeLn ("Model Element: " + umlident.modelElementType(tagValue.

getModelElement ().getClass ().getName ()));

44 textOutput.writeLn ("Model Element Name: " + tagValue.getModelElement ().
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getName ());

45 tag_found += 1;

46 }

47 }

48

49 // list all stereotypes

50 textOutput.writeLn ("======= All UMLseCh Stereotypes");

51 StereotypeClass stereotypeClasses = (StereotypeClass)corePackage.getStereotype

();

52 f o r (Iterator iter = stereotypeClasses.refAllOfClass ().iterator (); iter.hasNext

();) {

53 Stereotype stereotype = (Stereotype) iter.next();

54 stereo_exist += 1;

55 i f (stereotype.getName ().startsWith("substitute") || stereotype.getName ().

startsWith("add") || stereotype.getName ().startsWith("delete")){

56 textOutput.writeLn (stereotype.getName ());

57 stereo_found += 1;

58 }

59 }

60

61 // list all stereotypes of dependencies

62 textOutput.writeLn ("======= All UMLseCh Stereotypes of Dependencies");

63 //first list all the dependecies

64 DependencyClass dependencyClass_S = corePackage.getDependency ();

65 f o r (Iterator iter2 = dependencyClass_S.refAllOfClass ().iterator (); iter2.

hasNext ();) {

66 Dependency dependency_S = (Dependency)iter2.next();

67 //list all the stereotypes of every dependency

68 f o r (Iterator iter3 =dependency_S.getStereotype ().iterator (); iter3.hasNext ()

;) {

69 Stereotype stereotype_D = (Stereotype) iter3.next();

70 dep_stereo_exist += 1;

71 i f (stereotype_D.getName ().startsWith("substitute") || stereotype_D.getName

().startsWith("add") || stereotype_D.getName ().startsWith("delete")){

72 textOutput.writeLn (stereotype_D.getName ());

73 dep_stereo_found += 1;

74 }

75 }

76 }

77 textOutput.writeLn ("The Command found " + tag_found + " Tagged Values , " +

stereo_found + " Stereotypes and " + dep_stereo_found + " Dependency -

Stereotypes belonging to UMLseCh ,");

78 textOutput.writeLn ("but there are " + tag_exist + " Tagged Values , " +

stereo_exist + " Stereotypes and " + dep_stereo_exist + " Dependency -

Stereotypes in general.");

79

80 // List Vectorentries

81 textOutput.writeLn ("");

82 textOutput.writeLn ("

##############################################################");

83 textOutput.writeLn ("### Add Vector:");

84

85 // Add Vector

86 f o r (Iterator iter_add = add.iterator (); iter_add.hasNext ();){

87 StructUMLseChDelta delta_add = (StructUMLseChDelta) iter_add.next();

88 textOutput.writeLn ("--- Value: " + delta_add.getValue ());

89 textOutput.writeLn ("ID : " + delta_add.getID());

90 textOutput.writeLn ("Path : " + delta_add.getPath ());

91 textOutput.writeLn ("Parent: [" + umlident.modelElementType(delta_add.

getParent ().getClass ().getName ()) + "] " + delta_add.getParent ().getName

());

92 }

93

94 textOutput.writeLn ("");

95 textOutput.writeLn ("### Delete Vector:");

96
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97 // Delete Vector

98 f o r (Iterator iter_del = del.iterator (); iter_del.hasNext ();){

99 StructUMLseChDelta delta_del = (StructUMLseChDelta) iter_del.next();

100 textOutput.writeLn ("--- Value: " + delta_del.getValue ());

101 textOutput.writeLn ("ID : " + delta_del.getID());

102 textOutput.writeLn ("Path : " + delta_del.getPath ());

103 textOutput.writeLn ("Parent: [" + umlident.modelElementType(delta_del.

getParent ().getClass ().getName ()) + "] " + delta_del.getParent ().getName

());

104 }

105

106 textOutput.writeLn ("");

107 textOutput.writeLn ("### Substitute Vector:");

108

109 // Substitution Vector

110 f o r (Iterator iter_subs = subs.iterator (); iter_subs.hasNext ();){

111 StructUMLseChDelta delta_subs = (StructUMLseChDelta) iter_subs.next();

112 textOutput.writeLn ("--- Value: " + delta_subs.getValue ());

113 textOutput.writeLn ("ID : " + delta_subs.getID ());

114 textOutput.writeLn ("Path : " + delta_subs.getPath ());

115 textOutput.writeLn ("Parent: [" + umlident.modelElementType(delta_subs.

getParent ().getClass ().getName ()) + "] " + delta_subs.getParent ().getName

());

116 }

117

118 re turn t rue ;

119 }

Listing B.12: Check-Methode des Commands DumpAllUMLseChElements

The check method needs same parameters as the one in the previous chapter. In line 3
to 8 of listings B.12three counter variables are created. They will contain the amount of
found tagged values, stereotypes and dependency stereotypes and how many of them
belong to UMLseCh. It is easy to determine those values as stereotypes and tagged
values that belong to UMLseCh start with “add“,“delete“ or “substitute“. You can see
that changes by these values are divided in three groups. In line 11 to 13 a vector of
StructUMLseChDelta type is created for each group. The related class can be found in
listing B.5. Those three vectors should contain all made changes to an UML-diagram
by UMLseCh. After creating objects of type corepackage (line 19,20) and UMLTypeScanner

(line 22) the analysis of the diagram can begin. First the algorithm analysis the tagged
values therefore an object of taggedValueClass type is created which is iterated in line 27.
In line 28 within the for-loop the current element is assigned to the variable tagValue. The
program is now in the for-loop that means a tagged value has been found and counter
variable tag_exist has to be incremented. With help of the variable tagValue it is possible
to examine tagged values more closely. The if-statement in line 30 to 35 checks if the
found element is UMLseCh relevant and not null. Line 32 for instance checks whether the
name of the found element starts with “add“, “delete“ or “substitute“. In an UML-diagram
you can find the name before equals signs. When all if-conditions are fulfilled the type
of the element is determined and added to correct vector (line 38-40). Then an output
(line 42 to 44) informs the user about found elements. Line 45 increments the counter
variable for UMLseCh tagged values. In line 50 to 59 basically the same happens with
stereotypes in a diagram. An object of StereotypeClass type is created and iterated.
When a stereotype element is found a message is printed and the related counter is
incremented. This block does not store anything in vectors, for changes only tagged
values are imported. The third loop (line 65-76) runs through the dependencies. As we
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need stereotypes of dependencies another inner loop is needed to iterate them. This is
shown in line 63 to74. Principally these nested loops work like the two before as well as
the counter variables for found elements. This counter variables are now important. In
line 77, 78 and 79 the check method pints out how many elements of the three different
types (TaggedValues, Stereotypes and Stereotypes of Dependencies) has been found
and how many of these belong to UMLseCh. Now we come to the last part of the check
method. To check if all three vectors contain the correct information they are iterated and
their formatted content is displayed. The Iteration of the add vector is extended over line
85 to 92. The for-loop in line 86 to 92 runs through all objects in the vector and make
them available by casting with the variable delta_add (line 87). In line 88 to 91 an output
is generated that needs in places the UMLTypeScanner form chapter 7 (for instance in line
91).

umlident.modelElementType(

delta_add.getParent().getClass().getName()

)

The lines 97 to 104 and 109 to 116 do the same to the delete and substitute vector. At
the end the method returns true because the check was successful.

B.6 The class UmlTypeScanner

At this point we discuss methods from the UMLTypeScanner. We start with the method
modelElementType, which can be found in listing B.13.

1 // Identifies the modelelementtype

2 publ ic String modelElementType(String _classname){

3 t r y {

4 Pattern pattern = Pattern.compile(".*\\.(.*) \\ $Impl");

5 Matcher matcher = pattern.matcher(_classname);

6 matcher.find();

7 re turn matcher.group (1);

8 }

9 catch(java.lang.IllegalStateException e){

10 System.out.println(e.getMessage ());

11 re turn "ERROR";

12 }

13 }

Listing B.13: Methode modelElementType

The method parses an input string and returns the relevant part. The name of an as-
signed string contains the type of the model element. When the method getClass() is
applied to an object the class type of the object is returned. Therefore this method is
used to find out of which type an element is. For this the class path and the last part of
the string has to be cut off. The method uses pattern matching to achieve this goal. When
the method was successful the result is returned. Otherwise the exception is caught and
the method returns an “error“ string. The following method diagramType identifies with
the help of in the model contained elements which type of diagram it is. The method can
be found in listing B.14.
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1 // Identifies the type of the diagram

2 publ ic String diagramType(CorePackage _core) {

3

4 boolean classifierRole = f a l s e ;

5 boolean message = f a l s e ;

6 SystemVerificationLoader.logger.trace("Iterating over all diagramelements");

7 f o r (Iterator it = _core.getModelElement ().refAllOfType ().iterator ();it.

hasNext ();){

8 ModelElement me = (ModelElement) it.next();

9 i f (me != n u l l ){
10 String typ = t h i s .modelElementType(me.getClass ().getName ());

11 i f (!typ.equals("") && !typ.equals("null")){

12 System.out.print(typ+" #");

13

14 i f (typ.equals("ComponentInstance") || typ.equals("NodeInstance"))

re turn "Deployment Diagram";

15 i f (typ.equals("ActionState") || typ.equals("PseudoState")) re turn "

Activity Diagram";

16 i f (typ.equals("Class") || typ.equals("UmlClass")) re turn "Class Diagram

";

17 i f (typ.equals("UseCase")) re turn "Use Case Diagram";

18 i f (typ.equals("Initial")) re turn "Statechart Diagram";

19

20 i f (typ.equals("Message")) message = t rue ;

21 i f (typ.equals("ClassifierRole")) classifierRole = t rue ;

22 }

23 }

24 }

25 i f (classifierRole){
26 i f (message) re turn "Sequence Diagram";

27 else re turn "Collaboration Diagram";

28 }

29

30 // Diagramtype couldn 't be identified by its components

31 System.err.println("Diagramtype couldn 't be identified by its components");

32

33 re turn n u l l ;
34

35 }

Listing B.14: Methode diagramType

At the beginning two boolean variables classifierRole and message are initialized with
false. These variables are set to true when in line 20 and 21 an element message or
classifierRole in a diagram is found. These elements have to be stored to make it
possible to distinguish between a sequence diagram or collaboration diagram. Like in the
DumpAllModellElements check method all diagram elements are iterated. The type of the
diagram can be detected through the elements which are specific for a diagram. In line
14 and the following it is shown how the different types can be detected. Our example
is the deployment diagram. When a diagram contains an element “ComponentInstance“
or “NodeInstance“ it can be clearly identified. So the method can be terminated without
any further examinations. Line 20 and 21 are interesting as they show that a method
can’t be terminated instantly because a sequence diagram contains messages as well
as classifierRoles. The collaboration diagram contains only classifierRoles. That
means if only a classifierRole is found the algorithm can not decide which diagram
type it is. This decision is made in line 25 ff. after execution of the for-loop. Please note
that a sequence diagram without messages will be detected as a collaboration diagram.
If there is no diagram, because no elements are detected, an error message is written to
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the console and returns the string null.

Next is the method

public boolean identifiable(CorePackage _core){...},

which contains only the following line:

return this .diagramType(_core)!=null;.

So it just calls the before explained method. It just identifies whether a diagram could be
detected or if the method returns null . Furthermore a method will be explained which
returns true when the diagram is of the type which is described by the second parameter.
The according code is in listing B.15.

1 // Identifies if the type of the diagram is equal to the given type

2 publ ic boolean diagramType(CorePackage _core , DiagramType aType) {

3 switch (aType) {

4 case DeploymentDiagram:

5 re turn t h i s .diagramType(_core).equals("Deployment Diagram");

6 case ActivityDiagram:

7 re turn t h i s .diagramType(_core).equals("Activity Diagram");

8 case ClassDiagram:

9 re turn t h i s .diagramType(_core).equals("Class Diagram");

10 case UseCaseDiagram:

11 re turn t h i s .diagramType(_core).equals("Use Case Diagram");

12 case StatechartDiagram:

13 re turn t h i s .diagramType(_core).equals("Statechart Diagram");

14 case SequenceDiagram:

15 re turn t h i s .diagramType(_core).equals("Sequence Diagram");

16 case CollaborationDiagram:

17 re turn t h i s .diagramType(_core).equals("Collaboration Diagram");

18 d e f a u l t :
19 re turn f a l s e ;

20 }

21

22 }

23

24 publ ic s t a t i c enum DiagramType {

25 DeploymentDiagram , ActivityDiagram , ClassDiagram ,

26 UseCaseDiagram , StatechartDiagram , SequenceDiagram ,

27 CollaborationDiagram

28 }

Listing B.15: zweite Methode diagramType

The second parameter in line 2 is an enumeration type which is classified in line 24. A
switch statement allows us to distinguish between the values and returns true when the
diagram in CorePackage is the expected diagram by the value. Otherwise it returns false.

At least a method has been implemented which identifies and returns the ID of the passed
model element. The implementation is in listing B.16. The ID is a hexa-decimal number
therefore it is returned as a String and not as an int. The ID is filtered by a pattern
matcher (line 4-6) which gets as input string the output of the toString() method applied
on a model element. In order to prevent a system crash an exception is caught when no
ID can be found. In this case an “error“ string is returned instead of an ID.

1 // Identifies ID
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2 publ ic String modelElementID(ModelElement _me){

3 t r y {

4 Pattern pattern = Pattern.compile(".*ID: (.*) MID:.*");

5 Matcher matcher = pattern.matcher(_me.toString ());

6 matcher.find();

7 re turn matcher.group (1);

8 }

9 catch(java.lang.IllegalStateException e){

10 System.out.println(e.getMessage ());

11 re turn "ERROR";

12 }

13 }

Listing B.16: Methode modelElementID()
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C Downloads

The UMLsec tool, including the UMLseCh plugins can be downloaded in:

http://www-jj.cs.tu-dortmund.de/jj/umlsectool/Plugins/index.htm

The screencast and examples of the plugin presented in this Deliverable can be down-
loaded in:

http://inky.cs.tu-dortmund.de/main2/jj/umlsectool/manuals_new/UMLseCh_Static_

Check_SecureDependency/index.htm
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